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Foreword

This somewhat different reporting format of including
published papers, those in press, or those in preparation

for publication, should provide greater credibility when

the reader interprets our results and conclusions because

most of these papers have been reviewed by expert

referees. Not all investigators have prepared their data

for publication, and a few have not been able to prepare

their data for this report. Major data that have not been

prepared for publication or inclusion in a chapter have

been placed in the appendices to be available for future

analysis.

An overview of the scope and major findings of this study
can be found in section I, Summary. More complete

documentation can be found in the chapters in section 6,

Results, where manuscripts extant, in press, and in

preparation are located. A complete list of publications
from this study is presented as appendix H.

John E. Greenleaf, Editor
Life Science Division

NASA Ames Research Center

Moffett Field, California
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Acronyms and Abbreviations

BR bed rest

BV blood volume

C control

cm centimeter

d day

EMG electromyograrn

EVA extravehicular activity

EX LD exercise load

gm gram

Het hematocrit

Hb hemoglobin

Hg mercury

HRF Human Research Facility

hr hour

ht height

IKE isokinetic exercise

ITE isotonic exercise

kg kilogram

1 liter

m meter

m.in

ml

mo

N

N-m

NASA

NOE

NS

PEG

PT

PV

RCV

rpm

S

SA

SD

SE

wk

wt

yr

minute

milliliter

month

number

Newton meter

National Aeronautics and Space
Administration

no exercise

non significant

posture, equilibrium, and gait

proprioception training

plasma volume

red cell volume

rotations per minute

second

surface area

standard deviation

standard error

week

weight

year
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1. Summary

The purpose for this 30-day bed-rest study was to

investigate the effects of short-term, nigh-intensity
isotonic and isokinetic exercise training on maintenance

of aerobic work capacity (peak oxygen uptake); muscular

strength and endurance; and orthostatic tolerance, equi-
librium, and gall Other data were collected on muscle

atrophy, bone mineralization and density, endocrine

analyses of vasoactivity and fluid-electrolyte balance,

muscle intermediary metabolism, and performance and

mood of the subjects.

Nineteen men (32-42 yr) were allocated into three

groups: no-exercise control (peak oxygen uptake and

isokinetic tests once/wE N = 5), isotonic exercise training

(electronic Quinton ergometer, supine, N = 7), and

isokinefic exercise training (electronic Lido ergometer,

supine, N = 7). The exercise training regimens were

conducted near peak levels for 30 min in the morning

and 30 min in the afternoon 5 d/wk. The protocol con-

sisted of a 7-d ambulatory control period during which

the subjects equilibrated on the standardized diet, 30 d of
6° head-down bed rest, and a final 4.5 d of ambulatory

recovery. Their diet consisted of commonly available

fresh and frozen foods; mean caloric consumption of

2,678 + SE 75 kcal/d (control), 2,833 _+SE 82 kcal/day
(isotonic), and 2,890 + SE 75 kcal/d (isokinetic) resulted

in mean weight losses during bed rest of 1.01 kg, 0.85 kg,

and 0.0 kg, respectively.

The results indicated that: (1) The subjects maintained a

relatively stable mood, high morale, and high esprit de

corps throughout the study. Scores improved in nearly all

performance and mood tests in almost all the subjects.

Isotonic training, as opposed to isokinetic exercise
training, was associated with decreasing levels of psycho-

logical tension, concentration, and motivation, and with

improvement in the quality of sleep. (2) Peak oxygen

uptake was maintained during bed rest with isotonic

exercise training; it was not maintained as well with
isokinetic (-9.0%) or no-exercise (-18.2%) training. If a

9% reduction in aerobic power is acceptable, isokinetic

exercise training could be used for maintenance of

strength, endurance, and the reduced aerobic capacity in

astronauts during flight. (3) In general, there were few

decreases in strength or endurance of arm or leg muscles

during bed rest, in spite of reduction in size (atrophy) of

some leg muscles. (4) There was no effect of isotonic or
isokinetic exercise training on orthostasis, because tilt-

table tolerances were reduced similarly from 42-53 rain

to 30-34 min in the three groups following bed rest.

(5) Bed rest resulted in significant decreases of postural

stability and self-selected step length, stride length, and

walking velocity, which were not influenced by either

exercise training regimen. Pre-bed-rest responses were

restored by the fourth day of recovery.





2. Introduction

In September 1985 NASA Life Science managers from

Ames Research Center and Johnson Space Center agreed

to conduct a collaborative 30-d bed rest study to devise

and test exercise-training protocols for astronauts to

perform during flight that would maintain their physical

strength, endurance, and aerobic capacities (peak oxygen

uptake) at pre-flight levels. The primary purpose was to

compare the effectiveness of intensive lower extremity,

isotonic, ergometer exercise training; isotonic treadmill

exercise training; and isokinetic exercise training to

maintain peak oxygen uptake and muscular strength and

endurance. The secondary purpose was to determine

effects of these training regimens and no exercise training

on post-bed rest orthostasis (ability to stand without

fainting) and posture (equilibrium and gait). Additional

data of a more fundamental nature on various physio-
logical systems were collected to help understand how

these deconditioning responses occur.

The study was to be completed by October I, 1986, so

the findings could be applied to the selection of exercise
devices for Space Station Freedom. Because of the

Challenger accident on January 28, 1986, this study com-

pletion deadline was waived, but we decided to complete
it by the original October 1986 deadline.

The original protocol involved three 30-d bed rest periods

using 32 middle-aged men as astronaut surrogates. There

were to be three exercise-training groups of eight men

each plus a no-exercise-training group of eight men.
Because construction of the vertical treadmill was

delayed, the study preceded without the treadmill training

group. The final day of subject testing was September 29,
1986.

Hopefully these findings will assist in prescribing

exercise training regimens for use by astronauts to

maintain their working capacity, performance, and well-

being on Space Station Freedom and longer-duration

spaceflights.
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3. Background

The normal eugravitational forces on the body during

spaceflight are reduced by several orders of magnitude

and hydrostatic pressure within the body is negated,

resulting in a "disuse" adaptive reconditioning syndrome

(ref. 9), where the decrease in muscle size (atrophy) may
be accounted for by loss of muscular tissue and fluid

(ref. 14). Without utilization of exercise countermeasures,

the ability to maintain aerobic work capacity and to

generate muscular force decreases, not only during
spaceflight, but also during limb immobilization and

prolonged bed rest deconditioning in eugravity (refs. 5, 6,
11, and 12). Exercise is the primary method utilized by

both astronauts and cosmonauts for maintaining or

preventing muscular deconditioning during flight. While
exercise training can restore or maintain muscular

strength and endurance during de.conditioning, continuing
negative mineral and nitrogen balances indicate that

muscular deterioration has not been totally arrested

(ref. 9). Factors associated with or causing decreased
strength and endurance could be increased oxidative

enzyme levels, increased protein catabolism, and
decreased muscle substrate reserves (refs. I, 5, 9, and 12).

The ability to generate appropriate muscular force is a

requirement during intravehicular activity, especially

during extravehicular activity (EVA), and also during

egress from the Shuttle after landing. Leg muscles are

used mainly during EVA; usually for body stabilization

during upper body isometric and dynamic work to over-

come resistance of the pressurized spacesuit, to move

large masses such as satellites, and to handle other

structures during construction of Space Station Freedom.
Conversely, use of the upper extremities to stabilize the

body during lower extremity exercise may provide

sufficient stimuli (load) to maintain upper body strength

and endurance (ref. 3). Since lower extremity muscles

receive reduced stimuli during flight, leg exercise training

must be emphasized.

When the activity to be performed is of short duration,

high intensity, with a progressively increasing level of

stress, successful adaptation requires increases in

strength, endurance, and substrate reserves, as well as

hypertrophy of muscle cells (ref. 12). The differing types

of muscular contractions--concentric (fiber shortening)

or eccentric (fiber lengthening)--used during exercise

training usually result in different levels of adaptation.

High intensity, concentric (isotonic) exercise training

results in elevated oxidative enzyme levels similar to that

during endurance training, while use of only concentric

isokinetic contractions during training results in increases

in strength without significant muscular hypertrophy

(ref. 4). Thus, muscle size may not be a reliable indicator

of muscle strength or function. Maintenance of lower
extremity muscle mass during flight may afford some

protection against post-flight orthostatic intolerance

because tissue compliance in the lower leg appears to be

increased, in conjunction with the decrease in muscle size

following prolonged bed rest (refs. 2 and 3).

Exercise-training protocols will continue to be evaluated

as countermeasures for spaceflight deconditioning,

especially for the muscuioskeletal and cardiovascular

systems (ref. 13). The type, intensity, and duration of

these protocols ultimately will be tailored to the varying

problems encountered during flight, and also to the

various job requirements of the astronauts. Pilots may

train differently than those engaged in EVA (ref. 8).

An optimal exercise countermeasure program should not

only meet the physiological requirements of the astro-
nauts, but should also be efficient in time and energy

utilization (refs. 7 and 8). Maintenance of aerobic work

capacity, strength, and endurance during prolonged

spaceflight may be acquired best by exercises requiring
development of intermittent, maximal, muscular tension

rather than longer duration submaximal exercise training

(ref. 10). Therefore, the present study was designed to

evaluate the effects of high intensity and relatively short

duration exercise training regimens to ameliorate some
effects of bed-rest deconditioning.

_w m
5





4. General Procedure

Subject Selection

Candidates had to meet the following specifications:

(1) male, 32--42 yr old, (2) non-smoker for at least I0 yr

and no history of non-medical drug use, (3) pass an Air

Force 117or equivalent physical examination that included

a treadmill test, (4) moderate to good physical fitness as

defined by a maximal aerobic capacity of at least 35 ml

O2/min/kg body weight, (5) psychological fitness as

determined by the screening process described below.

An initial pool of over 2000 applicants responded by

telephone to a newspaper advertisement that requested

volunteers for a NASA-sponsored study. The advertise-

ment emphasized the exercise aspect of the study and

indicated the desirability of teachers as subject candi-

dates. The study was described to each candidate during

the telephone interview, and candidates were then

screened on the basis of the specifications listed above,

their interest in the study, and their willingness to make a

commitment to participate. Between five and six hundred

of these candidates were selected for a 25-min personal

interview with two personnel specialists experienced in

screening candidates for bed-rest studies. The interview

was desi=maed to identify and select candidates with

favorable characteristics, including healthy and physically

fit appearance, friendliness, good social skills, self-

reliance, good sense of humor, and high degree of

motivation to participate in the space program. Candi-

dates were rejected if they appeared physically unfit,

overweight, excitable, fidgety, overbearing, or if they

revealed a vague or indecisive commitment to the study.

A candidate's interest in the payment for study partici-

pation was considered an unfavorable indicator only if it

was the sole motivation for participation. Candidates were

selected or rejected immediately after the interview, with

the exception of questionable individuals who were

evaluated at the end of the day. Candidates were selected

individually on the basis of the interview criteria; no

attempt was made to meet selection quotas. Most

rejections resulted from candidates' decisions not to

participate. As a result of the interviews 120 candidates
were selected and asked to attend a briefing. Of these,

70 attended and were asked to take a physical examina-
tion. After the examination 27 candidates were selected to

participate in the orientation (training) phase of the study

prior to admission to the Human Research Facility (HRF).

During orientation the behavior of the candidates in

response to the experimental test protocol in the HRF was

observed by investigators, the HRF manager, and the
medical monitor. Following orientation the candidates

were rejected if their behavior, based upon experience in

bed-rest studies, was likely to preclude successful

completion of the study. Adverse behavioral charac-

teristics included uncooperativeness, overbearing or

obsessive personality, and lack of compatibility with

other subjects. At the end of the orientation period

23 subjects were selected to participate in the study. The

final group included 12 subjects in the first phase

(group I) that began 30 June 1986, and seven subjects in

the second phase (group II) that began 18 August 1986.

Candidates for this study were not subjected to person-

ality testing procedures. Experience with prior bed-rest
studies conducted in the I-IILF indicated that interview and

personal observation were more reliable indicators of

adaptability to this bed-rest study environment than

standard personality tests such as the Minnesota

Multiphasic Personality Inventory.

Nursing Staff Selection and Duties

The nursing staff consisted of a head nurse and two

nursing aides on each 8-hr work shift. Candidates

responded to a newspaper advertisement that requested

nursing assistance for a NASA-sponsored study. Staff
personnel were selected after a personal interview with

the head nurse; half had worked on previous bed-rest

studies conducted in the HRF. Remaining staff members
were selected from one third of the interviewed candi-

dates. Favorable selection criteria included motivation to

work on a NASA-sponsored study, relatively high degree

of previous bedside experience, positive attitude toward

the study, and inclination for cooperative teamwork.

The nursing staff was responsible for transporting

subjects to experimental test sites (photo 1), and to the

shower (photo 2) and telephone; maintaining hygiene;
providing food, massage, and medical care; and

supporting the subjects' needs within the constraints of

the protocol. The nursing staff was, therefore, the primary

source of social contact between the subjects and other

personnel.

Habitability Characteristics of the Human Research
Facility

This study was conducted in the HRF at Ames Research
Center, Moffett Field, California. The HRF consists of

two rooms with four beds each, two rooms with two beds

each, a dining area, a recreation area, and a central

nursing station (fig. 1). Room illumination utilized

fluorescent lights (lights on at 0700 hr, off at 2300 hr,

20---50 foot-candles at the head of each bed), and

incandescent lights above the beds controlled by the

subjects. Within the HRF each subject was provided with

reading material (books, magazines, and newspapers),

_"_ Wt _! _
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I

Photo 1. Limousine transportation to other testing sites. Photo 2. Horizontal shower in the Human Research

Facility.

376-1
Subject

room

408-1399-11

381-1 I
,372-11 I

Subject
room

420-1 1 407-1405-11 391-11

Subject I Rest

lounge/dining room

Horizontal
shower

Passage

Kitchen

Food
I _preparation

- ' | Storage area

Corridor _[- Entry
Rest room

J I • --- I_ 1

Dumb-waiter I t Rception

397-1

_.Subject _._
room

409-1

Test area

Electronics room

Secretary's

] office

HRF Manager's
office

m I ! m

422-1
394-11

.Subject
room

392-1 / 403-1402-11

Figure 1. Human research facility plan. Test subject numbers and Group (/or II) assignments are listed. Wavy fines

indicate moveable room partitions.
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games, AM/FM radio, and color television mounted on

the ceiling (photo 3). Headphones permitted individual
selection of radio and television stations. Videocassette

movies were transmitted to the individual television sets

from a videocassette recorder.

Photo 3. Test subject room in the Human Research

Facility.

Subject Group Allocation

Nineteen men, aged 36 _+SD 4 yr, ht 178 "4-SD 7 cm, wt

76.5 __.SD 7.6 kg, body surface area 1.94 __.SD 0.12 m 2,

percent fat 15.5 + SD 6.5%, peak leg strength 683 + SD

110 Nm, and 5,529 ml blood volume were allocated into

three experimental goups: no-exercise training (NOE,

N = 5) control, isotonic exercise training (ITE, N = 7),

and isokinetic exercise training (IKE, N = 7) (table 1).

The two separate bed-rest study groups were designated

Group I (photo 4) and Group 1I. The subjects were

assigned selectively to test regimen goups on the basis of

age, height, weight, peak oxygen uptake, and isokinetic

leg stren_-nh, in that order of priority. Selected character-

istics of subjects assigned to each exercise group are

listed in table 1. However, the subjects were allowed to
choose bed locations in the HRF in the order of their

admission (i.e., half of the subjects on the first day and

half on the second day), their order of daily test sched-

uling within each group, and their participation in the first
or second part of the study to allow those with work

commitments in the fall to participate in the summer

phase.

Diet, Body Weight, and Vital Signs

The diet consisted of commonly available fresh and

frozen foods, and 17 different daily menus were rotated

during each 42-d session. These menus were controlled to

provide approximately 20% protein, 62% carbohydrate,
and 18% fat (table 2). Mean (+SD, N = 19) daily

consumption of some basic minerals (m_d) and protein

(ffd) during the 7-d ambulatory and 30-d BR periods
were: Ca +2 ( 1,288 + 53 and 1,298 + 75), p+3 ( 1,847 + 53

and 1,856 ___104), Na + (5,626 + 172 and 5,442 + 495),

and protein (114 + 4 and 113 + 8), respectively. The

mean daily intakes of these dietary components were

not different although daily intake varied: calcium

(1,000-1,900 mg), phosphorus (1,450-2,700 mg), and
near the end of bed rest there was a reduction in sodium

intake to slightly less than 5 g for two d. The planned
caloric intake was 2,800 kcal/d for the NOE control

group, and 3,100 kcal/d for the IrE and IKE _oups.

There were no caloric adjustments for subjects with

different body weights since the average weight for the

three groups was approximately the same. The measured

mean caloric consumption was 2,678 kcal/d (NOE),
2,833 kcal/d (ITE), and 2,890 kcal/d (IKE), which

resulted in mean weight (+_SD) changes during bed rest of

-I.01 + 1.81 kg,--0.85 + 1.56 kg, and 0.00± 1.36 kg,

respectively (fig. 2). The subjects were supervised 24 hr/d
and all testing, showering and excretory functions were

conducted in the horizontal or 6 ° head-down positions.

Basal vital signs (blood pressure, pulse rate, respiratory

rate, and oral temperature) were normal and virtually

unchanged during the study (fig. 3).
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Photo 4. Test subjects of Group I.
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Table 2. Mean daily dietary composition

I

+SE

Energy

(kcal)

CHO

(g)
PRO

(g)
FAT

(g)
H20
(ml)

Na

(g)

K

(g)
Ca

(g)

P

(g)

No exercise (N = 5)

75 11 2 3 104 0.2 0.0 0.0 0.0

62% 21% 18%

Isotonic exercise (N = 7)

+SE

2833

82

365

12

63%

114

3

20%

102

3

18%

2512

109

5.5

0.2

Isokinetic exercise (N = 7)

4.8

0.1

1.3 1.9

0.0 0.0

I

!

2890

75

375

11

63%

112

3

19%

104

3

18%

2389

100

5.6

0.2

All subjects (N = 19)

4.8

0.1

1.3 1.9

0.0 0.0

-+SE

2813

47

362

7

63%

113

2

20%

101

2

18%

2353

70

5.5

0.1

4.8

0.1

1.3

0.0

1.9

0.0
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5. Experimental Protocol

Overview

The subjects participated in a wide range of activities

during the study (fig. 4). During the bed-rest phase the

subjects in the exercise _oups participated in twice-daily

30-rain exercise regimens, except on the maximal isotonic

exercise test-days in which there was one daily exercise

regimen. The control _oup participated in maximal

isotonic and isokinetic exercise testing once per wk. All

subjects had weekly blood sampling, cardiac output
measurements, and ultrasound (photo 5) measurements.

During the pre- and post- bed-rest phases all subjects had

measurements of equilibrium (photo 6), gait (photo 7),

orthostatic tolerance (photo 8), body density via water

immersion (photo 9), arm and leg P-31 magnetic

resonance spectroscopy (photo 10) measured at the
University of California-San Francisco Medical School,

leg magnetic resonance imaging (photo 11) measured at

the University of California-San Francisco Radiology

Ima_ng Laboratory, and radius (photo 12) and lumbar
spine (photo 13) densities. All subjects received 15-min

performance and mood tests (photo 14) at least once/d

throughout the 41.5-d study.

The subjects were confined to the HRF during the bed-

rest phases of the study, except for the last day when they

were transferred to an adjacent building for fllt-table

testing. During the pre- and post-bed-rest phases of the

stfidy the subjects were also confined to the HRF except

for tilt table and body density measurements in the

adjacent building, and magnetic imaging and bone densi-

tometry measurements for which they were transported to

San Francisco by limousine.

During bed-rest the subjects were restricted to head-down

(--6 ° ) recumbency. However, they were allowed one

pillow, freedom of movement horizontally within this

constraint, and to rise on one elbow during meals. The

subjects were allowed to interact freely with staff, inves-

tigators, and to visit other subjects in their rooms via

gurneys. Personal activities (e.g., hobbies, personal stereo
system, musical instruments) were permitted within the

constraints of the experimental design with care taken to

avoid disturbing others.

Peak Oxygen Uptake Procedure

Peak oxygen uptake was measured six times, before the

ambulatory control test on control day - 6, with an

abbreviated protocol to minimize training effects (fig. 5).

A seven-rain warm-up period was used; the next load was

400 kg-m/min below the peak load for two min, then

200 kg-m/min for the next two rain, and finally the peak
load for at least 2.5 min. This was followed by an appro-

priate cooling-down period. Two measurements were
taken in the sitting position, and all subsequent tests

(control and during bed rest) were performed with the

subjects in the horizontal-supine position on an

Imaginad'Ergometer Table (model 846 T, Quinton

Instruments Co., Seattle, WA 98121) (photo 15). Mean

data from the four supine control period tests were used to

establish baseline peak data for _oup allocation. One

subject (BEL) from the NOE g'roup, who exhibited

irregular electrocardiogram tracings, was precluded from

participating in later tests of peak oxygen uptake. Peak

testing was performed weekly (days 7, 14, 21, and 29)

during bed rest in all three _oups (fig. 4, max cycle).

Aerobic power was measured using a low-resistance, low

dead-space Rudolph valve (model 2700, Hans Rudolph,
Inc., Kansas City, MO 64108), a Tissot tank calibrated

electronic spirometer (model S-301 Pneumoscan, K.L.

Engineering Co., Slymar, CA 91342), and a three-liter

mixing chamber from which the gas was sampled at

0.5 1/min and then sent through anhydrous calcium

sulfate (N.A. Hammond Drierite Co., Xenia, OH 45385)

to O2 and CO2 analyzers (Applied Electrochemistry,

models S3-A and CD-3A, respectively; Ametek, Thermox

Instruments Division, Pittsburg, PA 15238). The ana-

lyzers were calibrated with gases standardized with the

Lloyd-Haldane apparatus. Analog data were processed

with an analog-to-digital converter (VISTA System IBM
model 17002, Vacumed, Ventura, CA 93003) and fed to

an IBM (model AT) computer; output data were printed

each 15 s. Peak oxygen uptake data were the mean of the
final four 15-s values.

Isotonic Exercise Training Protocol and Testing
Schedule

Subjects in the ITE _oup exercised in the supine position

(photo 15) during the 30-min morning and afternoon

exercise periods. The daily isotonic cycle ergometer

exercise training (Quinton model 846T) consisted of a

seven-min warm-up period at a relative load of 40% of
peak VO 2 followed by two min of exercise at 60%, 70%,

80%, 90% and 80% loads, with each separated by the

40% load (fig. 6(a)). The weekly testing schedule is given
in figure 6(b).
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Photo 5. Ultrasound test procedure.

|
Photo 7. Body gait testing.

Photo 6. Body equilibrium testing.

Photo 8. Orthostatic tolerance testing on the tilt table.
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!1

Photo 9. Body density testing in water tank.

Photo 11. Leg magnetic resonance imaging testing.

Photo 10. Arm and leg P-31 magnetic resonance

spectroscopic testing.

L

Photo 12. Radius bone density measurement.

,A

Photo 13. Lumbar spine bone density measurement,
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Photo 14. Performance and mood testing. Photo 15. Daily isotonic (dynamic) leg exercise training

and peak oxygen uptake testing on cycle ergometer.
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Isokinetic Exercise Training Protocol and Testing
Schedule

The daily isokinetic exercise training was performed on
the LIDO TM Isokinetic Rehabilitation System ergometer

(Loredan Biomedical, Inc., Davis, CA 95617) (photo 16).

The daily exercise training protocol and weekly peak
exercise test schedule are given in figures 7(a) and 7(b),

respectively. Five maximal leg flexions and extensions

through a 90 ° to I00 ° arc were performed in 10 s

(velocity 100°/s); this exercise was repeated at the

beginning of each minute for 15 rain per leg. Each set of

five repetitions in 10 s with one lower extremity was
followed by a 50-s rest, for a total of 10 sets in 10 min

(fig. 7(a)). Shoulder (arm) peak strength and endurance

using abduction and adduction were measured weekly

(photo 17). Peak isokinetic testing was performed weekly

(days 6, 13, 20, and 28) during bed rest (fig. 4, LIDO) in

all three groups. A schematic of the LIDO and its major

functional components is presented in figure 8.

Calibration of the LIDO digital head on three separate

days during the pre-ambulatory control practice period

revealed similar variability on each day. Results from one

calibration test are presented in figure 9. The procedure

involved placing weights, indicated on the X-axis, on the

calibration arm (attached to the digital head), allowing the

weight to fall through 180 ° five times, and then recording
the mean flexion torque. There was no difference in the

errors (measured torque) for the flexion and extension
calibrations.

Isokinetic Proprioception Protocol and Testing
Procedure

The 2.5-min warm-up and cool-down periods shown on

the isokinetic testing schedule (fig. 7(a)) were devoted to

proprioception training (PT) of both extension and flexion

of the right knees. Only the IKE group participated in this

daily proprioception training. The other two groups per-
formed this 2.5-rain routine once each wk during the

warm-up period of the weekly muscular strength test

(day 6, Pro. Test). Special software was written to control

the LIDO ergometer during collection of proprioceptive
data.

During proprioception training and weekly testing the

subject was requested to follow a dynamically expanding

(representing knee extension) and contracting (repre-

senting knee flexion) bar-graph video display moved
randomly by the computer; with a horizontal line on the

display (photo 15); the movement of which was

controlled by his flexion-extension lower extremity

movements at a speed of 60°/s. A Fourier analysis was

used to compute the error between the subject's limb-

position curve with the computer-driven curve. A linear

scale provided a score indicating how well the subject
was able to follow the moving bar with the horizontal

line; 100 was perfect. To reduce subsequent learning

responses, the subjects were given 10-15 practice

sessions on the proprioceptive test before bed rest
commenced.

Photo 16. Daily isokinetic leg exercise training and peak

strength and endurance testing on isokinetic ergometer.

21



(A)

lOO

90

A

80

-" 7O
w
e-
Q
*" 60c
m

L.

o 50

® 40

lu
m

® 30

10

Rest
m

ml Exercise

100

9O

80

70

60

50

40

30

20

10

-- 01
r"

m

fn
-- q)

r.
o

D m

Q.
G)

_ o
O

g
L.

Q.
-- O

L-

g.

0 2.5 4.5 6.5 8.5

Peak exercise

Time (min)

10.5 12.5

_1_ Cool
Vl-down

15 0 2.5

(e)

a.m. I

p.m. I

Day 1

100% -
P.T.

Day2 Day3 Day4

100%- 40%- 100%-

I P.T. I P.T. I P.T.

Day5 Day6 Day7

LIDO 100%

100% - peak, Cycle

I P.T. I Protest I peak

100% -
P.T.

100%- 100%- 100%-

I P.T. I P.T. I P.T.

60%
Cardiac 40%-

I output I P.T. I Rest

Bed rest (days)

Figure 7./sokinetic exercise training protocol and testing schedule.

22



Photo 17. Weekly shoulder peak strength and endurance testing on isokinetic ergometer.
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Orthostatic (Tilt-Table) Tolerance Protocol

Orthostatic testing was performed on ambulatory control

day-7 and bed rest d 30 (fig. 4) on a motorized Laberne

Physical Therapy Treatment table (photo 7). This was the

first occasion that the subjects were head-up after bed

rest. The protocol consisted of 45 rain control in the

horizontal supine position for the pre-bed rest test, and in

the 6 ° head-down supine position for the post-bed rest

test. The subjects were tilted 60 ° head up within 10-15 s,
remaining in that position for 60 min or until the onset of

presyncopal signs and symptoms (e.g., nausea, dizziness,

sweating, lightheadedness, or tunnel vision), and had at

least a 10-min recovery period in the 6 ° head-down

position. An antecubital vein was catheterized 45 min
before tilt. Plasma volume was measured between -15

and -5 min of the control period with the standard Evans

blue dye (T-1824) dilution technique. When tilted the

subjects stood on a pillow placed on a 7-cm foam cushion

on the foot-board. The subject was instructed to remain

quiet and relaxed without overt muscular contractions.

Heart rate and blood pressures were taken periodically

during the control and tilting periods.

Further details for each study are contained in the

individual reports in the following section (6. Results).

26



6. Results

ISOTONIC EXERCISE

Work capacity during 30 days of bed rest with

isotonic and isokinetic exercise training

J. E. GREENLEAF, E. M. BERNAUER, A. C. ERTL, T. S. TROWBRIDGE, AND C. E. WADE

Life Science Division, NASA Ames Research Center, Moffett Field 94035; Human Performance

Laboratory, University of California, Davis 95616; and Letterman Army Institute of Research,

Presidio of San Francisco, California 94129

GREENLEAF, J. E., E. M. BERNAUER, A. C. ERTL, T. S.
TROWBRIDGE, AND C. E. WADE. Work capacity during 30 days
of bed rest with isotonic and isokinetic exercise training. J. Appl.
Physiol. 67(5): 1820-1826, 1989.--The purpose was to test the
hypothesis that twice daily, short-term, variable intensity iso-
tonic and intermittent high-intensity isokinetic leg exercise
would maintain peak 02 uptake (Vo2) and muscular strength
and endurance, respectively, at or near ambulatory control
levels during 30 days of -6 ° head-down bed rest (BR) decon-
ditioning. Nineteen men (aged 32-42 yr) were divided into no
exercise control (peak Vo: once/wk, n = 5), isokinetic (Lido
ergometer, n = 7), and isotonic (Quinton ergometer, n = 7)
groups. Exercise training was conducted in the supine position
for two 30-rain periods/day for 5 days/wk. Isotonic training
was at 60-90% of peak Vo2, and isokinetic training (knee
flexion-extension) was at 100°/s. Mean (-SE) changes (* P <
0.05) in peak _'o2 (ml.m-l.kg -1) from ambulatory control to
BR day 28 were 44 __.4 to 36* - 3, -18.2%* (3.27-2.60* i/m)
for no exercise, 39 - 4 to 40 - 3, +2.6% (3.13-3.14 l/rain) for
isotonic, and 44 _ 3 to 40* - 2, -9.1%* (3.24-2.90* l/rain) for
isokinetic. There were no significant changes in any groups in
leg peak torque (right knee flexion or extension), leg mean total
work, arm total peak torque, or arm mean total work. Mean
energy costs for the isotonic and isokinetic exercise training
were 446 kcal/h (18.8 _+1.6 ml. rain -_ .kg -_) and 214 kcal/h (8.9
__.0.5 ml-m-_.kg-_), respectively. Thus near-p.eak, variable
intensity, isotonic leg exercise maintains peak Vo2 during 30
days of BR, while this peak, intermittent, isokinetic leg exercise
protocol does not.

deconditioning; maximal exercise; peak oxygen uptake;
strength; endurance

THE PHYSICAL WORKING CONDITIONS during construc-
tion of the Space Station will require astronauts to spend
many weeks in microgravity with long hours of extrave-
hicular activity (EVA) working within the confines of a

space suit. Sustained EVA can impose fatiguing loads as
the result, in part, of the extra effort necessary for
overcoming suit resistance to movement from the stiff-

ening effect of pressurization. Thus efficient and produc-
tive work during EVA requires astronauts to maintain
high levels of aerobic work performance, strength, and
muscular endurance (work capacities).

Major unanswered questions are what levels of work-
ing capacities are actually necessary and what types of
exercise training protocols (prescriptions) astronauts
should use on the ground, in the Space Station, and after

flight, to acquire, maintain, and restore the appropriate
levels of physical fitness for the work they must perform.
Before optimal exercise prescriptions can be written, it
is necessary to determine the type and intensity of ex-
ercise that would maintain these working capacities at

or near their eugravity levels during exposure to micro-
gravity. These optimal protocols apparently have not yet
been formulated (7, 8, 10).

Therefore, the purpose of the present study was to
determine whether short-term variable intensity isotonic

and intermittent high-intensity isokinetic leg exercise of
relatively short duration would be effective for maintain-
ing peak 02 uptake {_702) and muscular strength and

endurance, respectively, during head-down bed rest (BR)
acclimatization.

METHODS

Subjects. From an initial group of-2,000 candidates,
informed written consent was obtained from 19 men

(aged 32-42 yr) who had passed a comprehensive medical
examination that included a complete medical history,
physical examination, and standard laboratory tests. All
subjects were nonsmokers and none took nonprescribed
medications. They performed recreational exercise two
to three times per week and, with one exception, consid-
ered themselves to be in fair to good physical condition;
three indicated they were in excellent condition.

Procedure. The subjects were.divided into three groups
on the basis of age and peak V02: no exercise training
control (n= 5), isotonic exercise training (n = 7), and

an isokinetic exercise training (n = 7) (Table 1). After
an intensive familiarization period for 3 mo before BR,
12 subjects (section 1:4 no exercise, 4 isotonic, and 4
isokinetic exercise) entered the Human Research Facility
at Ames Research Center and were tested July and
August 1986. The remaining seven subjects (section 2:1
no exercise, 3 isotonic, and 3 isokinetic exercise) were
tested in August and September 1986. The experiment
entailed 7 days of ambulatory control when the subjects
equilibrated to the standardized diet and performed the
pre-BR base-line tests, 30 days of -6 ° head-down BR,
and a 4.5-day ambulatory recovery period. The subjects
performed sitting ergometer exercise for 0.5 h daily dur-
ing the ambulatory control period to retard the semicon-
finement deconditioning. They were supervised 24 h/
day. Room lighting was turned on at 0700 h and off at
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2300h. The subjectswererequestedto remainin bed,
andwehavenoevidencethat anysubjectstoodup.All
testing,showering,and excretoryfunctionswereper-
formedin the horizontalor head-downpositions.The
menwereallowedto useonepillowandto riseonone
elbowto eat.Averageenergyexpenditurewasmeasured
continuouslyfor each30-minexerciseperiod,whichin-
cludedtherestperiodsduringisokineticexercise.

Diet. The diet consisted of fresh and frozen foods.

Seventeen different daily menus were rotated approxi-

mately in a sequential manner during the 42 days. The
prescribed daily caloric intake was 2,800 kcal/day for the
no exercise group and 3,100 kcal/day for the two exercise

groups. No caloric adjustment was made for body weight.
Body weight was measured daily.

Because of the difficulty in arranging meals around
the exercise periods, some gastrointestinal disturbances,

and dislike of some foods, not all of the prescribed food
was consumed. Composition of uneaten food was meas-
ured, and the actual dietary intakes were calculated from
Gebhardt et al. (5). Water and other fluids were con-
sumed ad libitum, and the volume was recorded.

Design of exercise regimens. The major premise was
that the level of pre-BR aerobic capacity and strength
and endurance could be maintained best by employing
exercise training regimens during BR that emphasized
high intensity and shorter duration (10), rather than

those utilizing moderate intensity for longer durations
(1, 2, 7-12). Investigators that utilized the latter have
found that ambulatory aerobic capacity could not be
maintained during prolonged BR (7, 8). Our exercise

training regimen criteria were 1) maximal stimulation
for the body's adaptive mechanism, 2) 1 h of exercise per
day, and 3) minimal risk of undue fatigue and serious
injury. The first design criterion required the use of

alternating or intermittent intensities to provide maxi-
mal stimuli while preventing undue fatigue and injury.
The second was to equate total _ro2 for the two training
protocols, but this required much more than the 1 h of

exercise/day. Thus it was decided to use the two present
protocols and measure their total work-rest energy levels

because the major purpose for the study was to attempt
to maintain strength, endurance, and aerobic capacities.

Peak and daily isotonic exercise. Peak VO2 was meas-

ured six times before the ambulatory test on control day
2. Two measurements were taken in the sitting position,
and all subsequent tests (control and during BR) were
performed while the subjects were in the horizontal-
supine position on a Quinton (model 845) electronic

ergometer. Mean data from the four supine control period
tests were used to establish base-line peak Vo2. One

control (no exercise) subject exhibited irregular ECG
tracings and was precluded from participation only in

subsequent V.o2 tests, hence n = 4.
The peak Vo2 protocol (Fig. 1) used on control day 2

and weekly during BR involved a 7-rain warm-up at the
40% relative work intensity derived from the base-line
peak _ro2. The first load, performed for 2 rain, was -400
kg.m -1.rain -1 below the peak load; the second increase
in load was -200 kg. m -1. rain -_ below peak for 2 rain,

and then the "peak" load was undertaken. If the subject
completed 2 rain at this peak load, it was increased by

200 kg.m-l.min -1 until he was unable to maintain 50
rpm. This effort was followed by a controlled cool-down
period (Fig. 1). Shoulder braces and handgrips were used
for stabilization during supine exercise. This abbreviated
test was used to help reduce any possible training effect.

Daily isotonic leg exercise training was conducted in
seven subjects in the horizontal-supine position for 30-
rain periods in the morning and afternoon -5 days/wk

(Fig. 2). The subjects warmed up for 7 rain at a relative
intensity of 40%. The warm-up period was followed by 2
rain of exercise at 60, 70, 80, 90, and 80%, with each bout
separated by 2 rain at 40%, and a final 5-rain cool-down
period. The total 30-rain exercise was conducted at a
relative intensity of 40% on day 3 (A.M.) and day 6 (P.M.)
to allow for recovery and to reduce injury. Other exercise

tests (submaximal cardiac output at 60% load, peak
isokinetic exercise, and peak isotonic exercise) substi-
tuted for the normal training protocol on the 2 remaining

days (Fig. 2, lower schedule). Once the absolute and peak
exercise loads were established in the ambulatory control

TABLE 1. Anthropometric and physiological base-line data for three groups

Surface Peak Vo2, Leg Total Blood

Age, Ht, Wt, Fat, supine Strength, Volume"
yr cm kg Area, %

m2 I/rain ml-_.min-_.kg-_ N/m

Plasma Erythrocyte

Volume* Volume"

ml ml/kg ml ml/kg ml ml/kg

No exercise (n = 5)

Mean 36 177 74.6 1.91 15.5 3.19 44 645 5,433 71
-_SD 4 5 11.9 0.14 5.5 0.58 10 86 642 8

_SE 2 2 5.3 0.06 2.4 0.26 5 38 287 4

Isotonic exercise (n = 7)

Mean 36 178 80.2 1.98 19.9 3.46 43 714 5,319 66

±SD 3 9 4.1 0.11 5.8 0.68 8 112 958 10
±SE 1 3 1.5 0.04 2.2 0.26 3 42 362 4

Isokinetic exercise (n = 7)

Mean 36 177 74.3 1.91 11.0 3.38 46 704 5,809 79
±SD 4 7 6.2 0.13 5.2 0.36 7 102 511 9

_SE 2 3 2.4 0.05 2.0 0.14 3 38 193 3

3,401 45 2,032 27

443 6 240 3

198 3 107 1

3,255 40 2,064 26
503 5 461 5

190 2 174 2

3,665 49 2,144 29
441 6 208 4

167 2 78 2

* Ambulatory control day 1.
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period, they were used throughout the study in all three

groups. Ergometer calibration was checked periodically.
The metabolic system utilized a low-resistance, low-

dead-space Rudolph valve, a calibrated (Tissot tank)
Pneumoscan (model S-3000) spirometer, and a 3-liter
mixing chamber from which the gas was sampled at 0.5
1/min and then sent through anhydrous calcium carbon-
ate to O2 and CO2 analyzers (Applied Electrochemistry,
models S3-A and CD-3A, respectively). The analyzers
were calibrated with gases standardized with the Lloyd-
Haldane apparatus. Analog data were processed with an
analog-to-digital converter (Vacumed, model Vista) and

fed to an IBM (model XT) computer; output data were
printed each 15 s. Peak Vo2 data were the mean of the
final four 15-s values.

Peak and daily isokinetic exercise. Peak isokinetic
strength was measured six times before the control
period, on control day 5, and at weekly intervals on day
6 during BR with the subjects in the horizontal-supine
position. The test consisted of one set of five peak right
and left knee flexion and extension repetitions from 90"
to 100 ° range of motion at 100°/s on a Lido isokinetic
ergometer (Loredan Biomedical). Also, right and left
shoulder total work and peak torque were measured
weekly using one set of five abduction and adduction
repetitions at 100°/s with range of motion from 90 ° to
100 °. Arm training was not performed.

Daily isokinetic leg exercise training was conducted in
seven subjects in the horizontal-supine position for 30-

rain periods (15 rain for each leg) in the morning and
afternoon ~5 days/wk (Fig. 3). After a 2.5-rain warm-up

period for each leg, the subjects performed 10 sets of five
peak flexion-extensions at 100°/s with one leg. Each set
took _10 s and was followed by a 50-s rest period. A 2.5-
rain cooling-down period followed the 10th set. The
subjects then performed this procedure with the other
leg. The Lido ergometer was calibrated periodically.

Peak torque (N/m) is the maximal torque produced
for flexion and for extension during one of the five
repetitions at the specified velocity of 100°/s; it is maxi-
mum muscular force (strength) under this particular set
of conditions. Total work (N/m) equals the sum of the
work per five repetitions. The work/repetition is the

average time integral of torque × velocity for the five
flexion and extension movements; it indicates the ability

of the muscle group to produce force throughout the
range of motion.

Blood volume. After 30-rain rest in the supine position,
plasma volume (PV) was measured with the standard
Evans blue dye dilution technique from one 10-rain post-
injection blood sample; blood volume (BV) was calcu-
lated from the PV and microhematocrit (Hct) corrected

for trapped plasma (0.96) and whole body Hct (0.91) (6).
Erythrocyte volume was BV - PV.

Statistical analyses. These data were analyzed with
dependent and independent t tests and analysis of vari-
ance using the UCLA BMDP program P2V. The New-
man-Keuls, Tukey, and Dunnett tests were used to iden-
tify specific, significant, time-related differences. The
conservative Greenhouse-Geisser and Huynh-Feldt tests
were used to compensate for the presence of type I errors
(false positives). The null hypotheses was rejected when
* P < 0.05. Nonsignificant differences are denoted by
NS. Variability is expressed _SE unless indicated oth-
erwise.

RESULTS

Daily vital signs and caloric intake. Early morning
resting (sitting for 30 rain in the control and recovery
periods) mean systolic and diastolic blood pressures,
pulse and respiratory rates, and oral temperatures were
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essentially unchanged during the ambulatory control,
BR, and ambulatory recovery periods; and there were no

consistent, significant differences in these responses be-
tween groups (Fig. 4). Mean systolic and diastolic pres-
sures varied between 115-120 mmHg and 70-80 mmHg,
respectively; pulse rates averaged about 60 beats/rain,
and respiratory rates -10-12/rain. The average __SE
mean oral temperatures during BR for the no exercise,

isotonic, and isokinetic exercise groups were 36.31 _+
0.02°C, 36.33 _ 0.01°C (NS), and 36.30 _ 0.02°C (NS),

respectively. Mean __SE daily caloric intake for the no
exercise (2,678 _+ 75 kcal), isotonic (2,833 ± 82 kcal), and
isokinetic (2,890 __ 75 kcal) groups resulted in body

weight losses during BR of 1.01 _ 0.81 kg (NS), 0.85 ±

0.59 kg (.NS), and 0.0 ± 0.52 kg (NS), respectively.
Peak VOw. Mean (±SE) aerobic power (peak Vo2) was

maintained at ambulatory control levels in the isotonic

exercise training group but not in the other two groups
(Fig. 5). Because body weights were maintained relatively
constant, the 02 data expressed as l/min exhibited the
same trends and statistical significance levels as those

expressed in ml.min -_.kg -_ of body weight. The peak
Vo2 in the isotonic group went from 39 ± 4 ml-rain -1 •
kg -1 (3.13 ± 0.29 l/rain) on control day 2 to 40 ± 3 ml.

rain -_-kg -1 (3.14 ± 0.23 l/rain) (A = +2.6%, NS) on BR

day 28. Comparable data were 44 ± 3 ml.min-_.kg -_
(3.24 ± 0.17 l/rain) to 40 ± 2 ml-min-l.kg -] (2.90 ± 0.16
l/rain) (A = -9.1%, P < 0.05) in the isokinetic group

DURING BED REST

and 44 _+ 4 ml-min-_-kg -_ (3.27 ± 0.31 l/rain) to 36 ± 3

ml.min-l-kg -_ (2.60 _+ 0.26 l/rain) (A = -18.2%, P <
0.05) in the no exercise control group. Peak Vo: in the

isokinetic group showed a decreasing trend by 5.2% (NS)
on BR day 7, and it decreased (* P < 0.05) by 6.7%*,
9.9%*, and 8.8%* throughout the BR period. Conversely,
while the Vo2 of the no exercise group showed a decreas-
ing trend by 9.5% and 10.6% (NS) on BR days 7 and 14,

respectively, it continued to decrease (*P < 0.05) to

-13.8%* and -18.0%* during BR (Fig. 5). When com-
pared with control day 2 data, there were no statistically
significant changes in peak exercise load, ventilation, or

respiratory exchange ratio (RER) during BR in any
group. The RER and ventilation tended to follow the
peak _ro2 levels. Changes in peak heart before to after

BR were 184 ± 2 to 181 ± 7 beats/rain {NS) for no
exercise, 170 ± 5 to 185 ± 5 beats/rain (P < 0.05) for
isotonic, and 167 ± 5 to 175 ± 4 beats/rain (NS) for
isokinetic.

Peak strength and endurance. There were no statisti-

cally significant changes in peak torque for right knee
extension and flexion in any group (Fig. 6). There was a
trend for both peak torques to increase with isokinetic
training, and for peak torques to remain constant or
decrease in the no exercise and isotonic groups. In gen-

eral, knee flexion and extension peak torques for both
knees remained within ±10% of ambulatory control lev-
els.
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Leg mean totalwork (rightlegflexionand extension
+ leftlegflexionand extension)valueswerenotchanged
significantlyduringBR in any group (Fig.7).Isotonic
and no exercisegrouptotalwork tendedtodecrease(NS),
whereas isokineticgroup work tendedto increasefrom
600 to 700 N/m (NS).

Arm mean (±SE) totalwork and totalpeak torques
(rightarm abductionand adduction÷ leftarm abduction
and adduction)were alsounchanged duringBR in the
threegroups.The rangefortotalwork was 350-400N/
m and 41-65N/m forpeaktorque(Fig.8).
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DISCUSSION

The purpose for this study was to design and test two-
leg exercise-training protocols that would maintain peak
Vo_ and muscular strength and endurance during 30
days of -6 ° head-down BR deconditioning. These train-
ing protocols prevented the losses expected during BR.
Although not increased significantly (compared with am-
bulatory control levels), peak Vo_ (isotonic group) and
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peak torque (strength), as well as total work (endurance)
in the isokinetic group exhibited increasing trends by the
end of BR. The basic guideline for the design of both
exercise training protocols was to maximize intensity

and minimize duration and risk of overtraining and
injury. The 50-s rest periods allowed for recovery during
isokinetic training, and the 2-min loads at 40% of peak
"_o2 interspersed between the higher isotonic loads was
reported to be less stressful than exercise without them.
In the event peak Vo2 declined during BR, the 90% load

was selected as the highest, so the subjects would not
work too far above 100% of their ambulatory peak load.
Findings from the performance-mood tests suggested
some subjective fatigue in the isotonic group (C. De-
Roshia, personal communication), but only three sub-
jects had symptoms that required alterations in the pre-
scribed protocol. Subject GRE (isotonic) substituted 40%
bouts for 90% bouts on three consecutive occasions be-

cause of calf muscle strain; Subject MCC (isokinetic)

cancelled left leg training on two consecutive occasions
because of muscle pain; and Subject STO (isokinetic)
cancelled training one morning and performed at a re-
duced level in the afternoon because of gastrointestinal
distress.

._strand and colleagues (11) were among the first to

study physiological effects of high-intensity (2,160 kpm/
min) equal intermittent work and rest periods between
0.5 and 3.0 rain. The shorter periods of 0.5 and 1.0 rain
duration were well tolerated by the single male subject
for 1 h of single sitting cycle ergometer exercise, whereas
the 2- and 3-rain periods were much more difficult. After

1 h .of exercise at the 0.5-, 1.0-, and 2.0-rain periods,
rectal temperature increased by ~1.35°C to 38°C; after
the 3-min experiment rectal temperature increased by
_2.00°C to 38.9°C. So 3-rain work/rest periods were
excessive. Hickson et al. (9) utilized six 5-rain intervals
of cycling at peak Vo_ separated by 2-rain intervals at

50-60% peak Vo2 for 40 rain/day, 3 days/wk for 10 wk.

On the alternate 3 days/wk the subjects ran for distance
40 rain/day. After 10 wk, peak V02 increased linearly by
44% and averaged 17 ml.min-l.kg -1 (0.82-1.65 l/rain).

Wenger and Bell (12) have concluded that exercise train-
ing intensity of 90-100% peak _'o2 produces the greatest

improvements in aerobic power when bouts are under-
taken four times (days)/wk and each bout should be >35
min. Thus our isotonic exercise training protocol of 2.0-

min periods of progressively increasing intensity from 40
to 90% peak Vo2 alternating with 40% levels for two 30-
min bouts/day for about 5 days/wk seemed to fit these

optimal requirements. The isokinetic exercise training
protocol was designed to fit with the isotonic protocol,
i.e., peak exertion for 10 s followed by 50 s rest also for
two 30-rain bouts/day for about 5 days/wk.

Maintenance of peak Vo2 during BR may be equated

to a positive training response of 18-20%, the decrease
in peak VO2 of the no exercise control group. Also, the
isokinetic regimen reduced peak Vo2 by 8-10%, about

half the loss of the no exercise group. Compared with
isotonic exercise results, it is possible that the greater
reduction of peak "_o2 in the isokinetic group during BR

was the result of the lower intermittent exercise energy
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expenditure. Comparable metabolic data are available
from a 14-day horizontal BR study where continuous
isotonic cycle ergometer leg exercise was performed for
two 30-rain periods/day at a relative .Vo2 of 68% of peak
_Zo2 or 32 ml-min-l.kg -1 (11). Peak VO2 was reduced by

9.2% (P <: 0.05). In the present study, 30 rain of isotonic
exercise was performed at a relative Vo2 of 50%, or 18.8
ml-min-_-kg -_, and the change in peak _'o2 at 14 days
of BR was +1.1% iNS). Thus greater continuous exercise
training energy expenditure was associated with greater

decreases in aerobic capacity, so it appears that the
higher exercise intensity rather than energy utilized is
more important for maintaining aerobic capacity during
BR. But firm conclusions should await results from the

studies where energy cost for isotonic and isokinetic
regimens are equal, or where peak 402 during BR is
reduced similarly.

The lack of significant decreases in strength and en-

durance in the no exercise training group during BR was
unexpected, although there was a decreasing trend in
peak torque (right leg extension) and leg total work. The
subjects had many other tests to perform during BR, so
they were moderately active. We did not want them
unduly confined because astronauts in microgravity are
not unduly confined. It is possible that the weekly peak
isokinetic exercise test was sufficient stimulation to at-

tenuate the normal decrease in strength and endurance
during BR. The use of only one isokinetic velocity (100°/
s) was to determine whether this type of exercise training

would maintain strength analogous with the intensive
isotonic training regimen for peak V02 and to reduce the
chances for injury. Before firm conclusions can be made,
a more complete spectrum of velocities should be tested

in deconditioned .subjects.
Subjects' peak Vo2 during BR has not been maintained

at ambulatory control levels in virtually all well-con-
trolled BR studies where submaximal isotonic leg exer-
cise was used as the training stimulus (3, 11). The usual
decreases in peak '_o2 during short-term BR (<30 days)

averaged 7-10% without and 4-5% with exercise training
during BR. During a 14-day horizontal BR study, near-
peak, intermittent, isometric leg extension exercise train-
ing for 1 h/day resulted in reductions of peak _'o2 of
4.8% compared with 9.2% after cycle ergometer leg ex-
ercise training at 68% of peak "_o2 for 1 h/day and 12.3%
in the no exercise control group ill). The greatest indi-
vidual decrease in peak '_'o2 reported was 31.4% (in the

present study). Conversely, Chase et al. (2) reported
increases in peak _'o2 (after 15 days of horizontal BR)

of 8.5% (cycling 30 rain/day at 40% peak Vo2) and of
16.4% (horizontal trampoiining 30 min/day at 32% peak
"v'o2). It is not clear how such low training intensities
could increase peak 'v'o2 but, in the same study, the
performance of 70-75% peak "v'o2 for 45 rain/day over 30

days of BR resulted in a mean decrease of only 4.6% in
peak Vo2. Kakurin et al. (10) reported that 17 rain/day

of variable intensity isotonic leg ergometer exercise and

30 min/day of rowing, impact loading, and breathing
exercise maintained peak Vo2 and muscular force and

endurance at ambulatory control levels in six men during
49 days at -4 ° head-down BR.
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The rate of loss of "qo2 capacity up to 30 days of BR

in nonexercised control subjects is ~0.8%/day (3), i.e.,
X7o2 = -0.82 (BR days) + 0.10. This regression curve

could not decline in a linear fashion continuously be-
cause, if this rate of loss continued, peak Vo2 would reach
100% loss (i.e., death) after 122 days. The levels of peak
XTo: in nonexercised subjects beyond 30 days of BR are
not well-documented under controlled conditions.

In spite of the suggestion that one bout of peak isotonic
leg exercise just before reambulation (after 10 days of
-6 ° head-down BR) may be sufficient to restore pre-BR
work capacity (4), results from the present study indi-
cated this may not be the case. When compared with the
magnitude of the decreases in peak X7o2 from the litera-
ture mentioned above, the weekly peak "v'o2 tests in the

present study did not appear, to retard significantly the
progressive decrease in peak Vo2 in the no exercise group
(Fig. 5). It would seem that factors associated with rea-
daptation to the upright posture, rather than to only the
maximal exercise test performed after 3 h of ambulatory
recovery, also contributed to the restoration of work
capacity in Convertino's subjects (4). However, this find-
ing is of considerable interest and emphasizes the impor-
tance of intensity rather than duration when designing

training protocols for BR deconditioning.
It is likely that focused, short bouts of near-peak

exercise can reduce the long hours of submaximal exer-

cise training currently used. Because this type of protocol
appears to function well for maintaining aerobic power
in ambulatory (12) and in bed-rested (10, present study)
subjects, there is no reason to assume it should not work
equally well for astronauts in microgravity. Optimal pro-
tocols for maintenance of strength and endurance need

further study.
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LETTERS TO THE EDITOR
Send letters to:

Marc S. Katchen, M.D.

765 N. Kellogg, Suite 200

Galesburg, IL 61401

Dear Sir:

In recent years there has been great interest in the use of physical

exercise training to counteract the deconditioning (adaptation) expe-

rienced by astronauts during exposure to the microgravity environ-

ment of spaceflight. As alcoholic-based elixers and tonics were

hawked by drummers to settlers of the Western territories and states

in the late 19th century, so exercise training is being sold as the

preventive and remedial procedure (countermeasure) for many of the

maladies suffered by astronauts during microgravity deconditioning

save perhaps orthostatic intolerance and immune dysfunction, it has
been suggested that isotonic, isometric, and isokinetic exercise train-

ing will be user01 in preventing muscle wasting, atrophy, and associ-

ated deterioration in strength and endurance, calcium loss and bone

demineralization, reduction in working capacity, decrements in mood

and cognitive performance, and the reductions in plasma volume and

probably total body water (2-7).
There has been little concern for management of exercise-training

procedures inflight because essentially all protocols have been devel-
oped by the astronauts themselves from personal exercise prefer-

ences. Most crewmembers exercise for I to 2 h/d inflight, and some

Russian cosmonauts have exercised up to 4 hid on flights up to I year

in duration. The general management philosophy has been to provide
various exercise machines and devices and to encourage the astro-

nauts to use them. However, on Skylab flights 2, 3, and 4, the man-

datory daily exercise time was increased from 0.5 h to 1.0 h to 1.5 h,

respectively. Soviet physician-cosmonauts have supervised crews

and encouraged crew compliance in completing daily exercise-

training protocols inflight (O. Atkov, personal communication).
With current planning for Space Station Freedom, a moon-base,

and flights to Mars, an ever-increasing number of crewmembers will
be spending longer periods of time in microgravity and in other hostile

environments. The complexity of these projects will continue to strain
the financial resources available for them, so exercise training proto-

cols must be devised to consider not only the physiological remedial

benefits, but also the financial cost.

To maintain the health and well-being of astronauts weighing 75 kg

during flight when about I h of additional exercise-training is per-
formed, nutritional requirements for each astronaut will be about

3,100 kcal/d and 2.2 L of drinking fluids/day (1); i.e., about 1,131,500

kcal/year and 803 L/year. Assuming that 3,100 kcal weighs 1.0 kg, and
that 2.2 L of drinking fluids equals 2.2 kg. then the daily food and

liquid ration would weigh 3.2 kg. Iftbe cost for lifting 1.0 kg into orbit

TABLE I. MEAN EXERCISE ENERGY UTILIZATION PER

75-kg SUBJECT WORKING FOR I h/d AT THREE
EXERCISE-TRAINING PROTOCOLS

DURING PROLONGED BED REST.
I

Exercise protocol

Yearly energy A Working
cost, kcal/ capacity,

person/year %

A. Continuous isotonic leg
exercise at 68% of maximal

working capacity (32

mIO z • min - i. kg- 0
= 720 kcal/h) 262,800 -9.2*

B. Alternating isotonic leg
exercise at 50% of maximal

working capacity (19

mIO 2 • rain - 0 o kg- n
= 428 kcal/h) 156,220 +0.31"

C. Intermittent isokinetic leg

exercise at 100_ of maximal

working capacity (9

mlO2 • rain - _ ° kg- n
= 202 kcal/h) 73,730 - 10.57

* 14 Days of bed rest (7).

? 30 Days of bed rest (2).
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TABLE 11. ESTIMATED YEARLY MONETARY COST PER

ASTRONAUT OF ORBITING ADDITIONAL FOOD AND

WATER NEEDED TO PERFORM THE THREE

REPRESENTATIVE EXERCISE-TRAINING

PROTOCOLS FROM TABLE I.

Assuming 3.100 kcal/d = 1.0 kg = $20,000/d
2.2 L/d = 2.2 kg = $44,000/d

A. 262,800 kcal/year = 85 kg = $1,700.000/year

161" L/year = 161 kg = 3.220.000/year
Y_, = 4.920.O00/year

B. 156.220 kcal/year = 50 kg = $ 1.000,000/year

118" L/year = 118 kg = 2,3(-,0,000/year

E = 3,360,000/year

C. 73,730 kcal/year = 24 kg = $480,000/year

lg* L/year = Ig kg = 360.000/year
_: = $900,000/year

* Sweat rate estimated as 440 g/h during continuous isotonic exercise

at bed rest (4).

or carrying it to the space station is $20,000. then the total cost of

lifting a I-year supply of food and water rations is 3.2 kg/d x 365

d/year x $20,000/kg = $23,360,000/person/year; hence the emphasis

on recycling.

Hourly and yearly caloric utilization for three representative exer-

cise training protocols during prolonged bed rest are presented in
Table I. Also included are the mean changes in working capacity

(maximal oxygen uptake) after bed rest. Note that the two protocols

with the largest (A) and smallest (C) average energy utilizations had

similar reductions in maximal working capacities, while that with in-

termediate (B) energy utilization had no change in maximal capacity.

Thus, there are options regarding caloric cost and physiological re-

medial parameters, e.g., the maximal working capacity that can be

manipulated when exercise-training protocols are designed and pre-
scribed.

Estimated yearly monetary cost for food and water for the three

exercise-training protocols from Table i are listed in Table li. It is

clear that compared with protocol A, use of protocol C will save about
$4,020.000 per astronaut per year--a considerable sum by itself, and

especially when multiplied for a crew of eight.

John Greenleaf, Ph.D.

Moffett Field, CA
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Abstract

Greenleaf JE, Bernauer EM, Ertl AC, Bulbulian R., Bond

M. Isokinetic strength and endurance during 30-day 6°
head-down bed rest with isotonic and isokinetic exercise

training. Aviat. Space Environ. Med. 1993; 64:0000-
0000.

The purpose was to determine if an intensive, intermit-
tent. isokinetic, lower extremity exercise training

program would attenuate or eliminate the decrease of
muscular strength and endurance induced by prolonged

bed rest (BR). Nineteen men (36 + 1 yr, 178 + 2 cm,

76.5 + 1.7 kg) were allocated into a no exercise (NOE)

training group (N = 5), an isotonic (lower extremity cycle

ergnmeter) exercise (ITE) training group (N = 7), and an

isokinetic (knee isokinetic flexion-extension) exercise

(IKE) training group (N = 7). Both rrE and IKE training

entailed two 30-rain periods daily for 5 d/wk. Peak knee

and shoulder (alxluction-adduction) functions were

measured weekly in all groups with one 5-repetition set.
After BR, knee total work average extension decreased

significantly by 16% with NOE, increased significantly

by 27% with IKE, and was unchanged with ITE. Average
flexion total work and peak torque (strength) responses

were unchanged in all groups. Force production increased

significantly by 20% with IKE and was unchanged with
NOE and ITE. Shoulder total work was unchanged in all

groups, while gross average peak torque increased

significantly by 27% with ITE, increased significantly by
22% with IKE, and was unchanged with NOE. Thus,

while ITE training can maintain some isokinetic functions

during BR, maximal intermittent IKE training can sig-

nificantly increase other functions above pre-BR control
levels.

Introduction

Physical exercise training has been utilized extensively

(refs. 5 and 19) and will continue to be performed by

astronauts in microgravity, especially during extended

(>3 too) flights. Major adaptive physiological changes

occur in humans during exposure to microgravity; in the

cardiovascular-respiratory, fluid, neurovestibular, and

muscular systems earlier in flight (refs. 4, 14, 16, and 17)

and in musculoskeletai systems later on extended flights

(refs. 4, 5, and 18). Exercise training maintains and

strengthens those physiological systems in normal

ambulatory subjects (ref. 11), in subjects undergoing bed-

rest-deconditioning (refs. 11 and 15), and in astronauts

during exposure to microgravity (refs. 11 and 19).

Muscular strength and endurance responses during BR,

immersion, and microgravity have been evaluated; data
from 13 BR studies, carried out from seven to 120 d

without remedial exercise training, indicated that virtually

all major muscle groups exhibited significant decreases in

maximal isometric strength (ref. 11). The strength loss in

smaller muscle groups (-13%) was about half the loss of

that in the larger muscle groups (-23%). Data from four

of these 13 studies, where remedal exercise was per-

formed during BR (15 to 72 d), indicated that mean
decrease in strength of the smaller and larger muscle

groups combined was only 4% (ref. 11).

The major question is what types (for example isometric,

isotonic-dynamic, isokinetic), intensities, and durations of

exercise are required to maintain astronaut performance

and well-being before and during flight, upon landing,

and during the post-flight period on the Earth, Moon, and

Mars. It is probable that different exercise training

protocols will be required for various phases of these

missions. A large, active muscle mass (via lower
extremity isotonic-dynamic exercise) is necessary to

change maximal oxygen uptake ( VO 2) appreciably. We

and others have employed lower extremity isotonic and

isometric exercise training during BR (ref. 11), but

apparently isokinetic exercise training has not been used

extensively to maintain strength and endurance during BR

deconditioning.

There is no unanimity of opinion concerning optimal

exercise-training prescriptions probably because there has

been insufficient thought and discussion directed toward

the major purposes for the exercise protocols, and the

ancillary but critical question of how much exercise is

enough? On longer flights beginning with Skylab in the
1970s, the procedure was to increase exercise time (0.5 to

1.0 to 1.5 hr/d) and variety of regimens on successive

flights (refs. 11 and 19). Some Russian cosmonauts have
exercised 2 to 3 hr/d during flight (ref. 5). This mass

action philosophy for prescribing exercise seems



appropriate for shorter (<30 d) flights when food and

fluid are adequately supplied, but the cost of these

nutrients increases dramatically on extended flights to

meet the increased exercise energy requirements (ref. 9).
Thus, the major goal now should be to formulate and test

exercise protocols for long flights (3-24 mo) that will not

only maintain astronauts health and performance, but will

also do so with the lowest possible energy utilization.

The purpose of the present overall BR study was to devise

and test exercise training protocols that would maintain

peak aerobic capacity (isotonic exercise) and muscular

strength and endurance (isokinetic exercise) in men

during 30 d of absolute BR. The purpose of this paper
was to determine if this isokinetic exercise training

regimen would attenuate or eliminate the decrease of

muscular strength and endurance during prolonged BR.

Shoulder strength testing was included to assess the effect

of lower extremity training on a non-trained muscle

group; i.e., a general systemic training effect. Results of

the isotonic exercise training (refs. 8 and 10), some

preliminary isokinetic exercise uaining data (refs. 8

and I 0), and other aspects of the study (refs. 1, 6, 7,
11-13) have been published. The complete isokinetic data

are reported here.

Methods

Nineteen men (X = 36 years, range 32-42 yr) gave

informed consent and passed a thorough medical

examination, including a treadmill test, and had normal
comprehensive blood and urinary analyses. All were

nonsmokers and none reported intake of nonprescribed
medications.

Full details of the overall procedure and methods are

presented elsewhere (refs. 10, 12, and 13). The study was

conducted in the Human Bed-Rest Research Facility at
Ames Research Center from July to October, 1986. The

men were allocated into three groups: no exercise (NOE)

training (N = 5), isotonic exercise (IRE) training (N = 7),

and isokinetic exercise (IKE) training (N = 7). The

experimental protocol required living for 41.5 d in the

facility and eating the controlled, nutritionally normal diet

consisting of 20% protein, 62% carbohydrate, and 18%

fat (ref. 12). There were 7 d of ambulatory control (C - 8

to C - 1) with the subjects exercising for 30 mirdd on a

cycle ergometer; 30 d of absolute (no standing or trunk

raising) 6 ° head-down bed rest (BR 1 to BR 30); and

4.5 d of ambulatory recovery (R1 to R4). The men were

allowed to have one pillow and to rise on one elbow to

eat. Mean (+_.SE) caloric intake was 2,678 + 75 kcal/d

(NOE), 2,833 + 82 kcal/d (ITE), and 2,890 + 75 kcal/d

(IKE); group non-significant body wt changes during BR

(BR 30 minus C - 1) were: -1.01 __.0.81 kg (NOE),

--0.85 + 0.59 kg (ITE), and 0.00 + 0.52 kg (IKE).

Isotonic lower extremity exercise training (30 min a.m.

and 30 rain p.m.) was performed by the ITE group

throughout BR (fig. l(b)). The subjects warmed up for
seven min at a relative intensity of 40% of peak VO 2.

This was followed by 2 rain of exercise at 60, 70, 80, 90,

and 80% of peak _'O 2, with each 2-rain bout separated

by 2 rain at 40%, and then a final 5-rain cool-down period

at 40% and 15% (fig. l(a)). Peak _'O 2 testing was

performed weekly during BR (d7-cycle peak) in all three

groups. Both isotonic exercise training and testing
(ref. 10) were done with the subjects in the horizontal,

supine position on an electronic cycle ergometer

(Quinton Imaging/Ergometer Table, model 846T, Seattle,

WA 98121).

The IKE training protocol, five repetitions of maximal

knee flexion and extension (velocity of 100°/s) through a

90 ° to 100 ° arc, was performed on a LIDO computer

controlled ergometer (Loredan Biomedical, Inc., Davis,
CA 95617) with a test subject video feedback display of

his leg position (ref. 1). Each set of five repetitions in I0 s

with one lower extremity was followed by 50 s rest for a

total of I0 sets in 10 rain. Hand gripping was used for

leverage and stabilization. After cool-down the other

extremity was exercised similarly for an additional

15 min. Peak isokinetic strength was measured six times

in the pre-control period, on control day-3 (C - 3), and
once each wk on day 6 during BR (d6, 13, 20, and 28).

The test was one set of five peak right and left knee

flexion and extension repetitions (90°-100 ° range of

motion) at 100°Is. A speed of 60*/s is perceived as a

heavier load, 180°Is as a lighter load, and 100°Is as an
intermediate load.

Lower extremity proprioceptive training (fig. 1(b), PT)

was performed in the 2.5 min warm-up and cool-down

periods and proprioceptive testing was done in the

respective 2.5-rain warm-up periods; these results have
been presented separately (ref. 1).

Shoulder peak abduction and adduction strength and

endurance were measured weekly after peak knee testing

with the subjects in the horizontal, supine position on the

LIDO ergometer to evaluate non-trained muscle groups.
Each testing protocol consisted of five maximal

abduction-adductions (100°Is) through a 90 ° to 100 ° arc

in 10 s with 50 s rest. There were four 5-repetition sets
with each shoulder. The wrist and elbow were locked

during the test so forearm and arm muscles were con-

tracted essentially maximally during shoulder movement.

The non-exercising arm was placed across the abdomen

and not used for leverage. Data from right and left

shoulders were combined to compensate for increased

38



(A)

lOO

90
.-e

80

=w70

60

o 50

o
> 40
a

_. 30

2O

10

Rest m Exercise

n

!

2.5 4.5 6.5 8.5 10.5 12.5

PVarm!: Peak exercise = = Cool
up down

Time (rain)

100

90

80

70

60

50

40

3O

20

10

15 0 2.5

(B) Day 1 Day 2

100% - 100% -

a.m. I P.T. I P.T.

100% - 100% -

p.m. I P.T. I P.T. I

Day3 Day4 Day5 Day6 Day7

40%- 100%- 100%-UDO peak, Cycle

P.T. I P.T. I P.T. IPr°'test] peak I

6O%
100%- 100%- Cardiac 40%-

Rest
P.T. I P.T. I output I P.T. I t

Bed rest (days)

Figure 1. Daily isokine_c exercise training protocol and weekly testing schedule (b) for the isokine_c and isotonic training

groups. PT is prop#oceptive training;pro test is propfioceptive testing (day 6).

variability due to dominant handedness; three subjects
were left-handed.

Peak torque (N-m) is maximum torque (i.e., strength)

produced for extension and flexion during exercise at the
specified speed. Work per repetition (N-m) is the average

time integral of torque X velocity for all flexion and

extension movements, indicating the ability of the muscle

group to produce torque (force) throughout its range of

motion. Total work (N-m) is the sum of work per repeti-

tions. Fatigue-endurance index (%) is (work per last

repetition)/(work per f'h-Strepetition) x 100. It indicates
the endurance or fatigability of a muscle group.

Evaluation of maximal variability (LIDO plus subject)

was obtained from isokinetic tests during the pre-control

period. Eighteen subjects performed four consecutive
maximal fight and left knee flexions and extensions and
force tended to decrease with successive contxactions.

Mean (+SD) force and ranges, obtained from eight

extensions (fight plus left) and eight flexions (right plus
left), were (820 + 130 and 624 to 1055 N-m, respectively)

for extension and (564 +_95 and 370 to 778 N-m,

respectively) for flexion.

The data were analyzed with appropriate independent and

dependent t-tests, two-factor group (NOE, ITE, IKE) X
time (C - 3, BR 6, BR 13, BR 20, BR 28) repeated

measures analysis of variance (Statview n Abacus

Concepts, Berkeley, CA 94704-1038). Results of

statistical tests are presented as exact probabilities

associated with making a Type I error given the null

hypothesis. Non-significant differences were NS.

Results

Average total work data from the IKE group for each of

the 10 daily exercise training bouts on day C - 3, BR 5,

and BR 28 are presented in figure 2, upper panel. Each

point is the mean of five repetitions each for the right and
left knees summed for the seven subjects for extension

and for flexion. On day C - 3 extension total work was

unchanged while flexion total work decreased signifi-

candy (t10-1 = 3.88, 0.01 < P < 0.001) over the I0 bouts.
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Figure 2. Average total work for extension and flexion

( X fight and left legs) data for the 10 daily bouts in the

iso/o'neb'cgroup on e_periment days C - 3, BR 5, and

BR 28. °P < O.OSvs. bout 1, P < O.O5 vs. C-3, P < O.05

vs. BR 5 (upper pane/). Mean (+._SE)of the average tota/
work data for the 10 dai_ybouts for leg extension and

flexion in the isokinetic group on experiment days C - 3,

BR 5, and BR 28. P < 0.05 vs. BR 5 (lower pane/).

On BR 5 both extension and flexion responses began

somewhat lower (NS) than their respective C - 3 levels

and were unchanged over their 10 bouts. However, BR 28
total work for the first bouts of extension and flexion

were the same as their respective levels on BR 5, but both

were increased significandy over BR 5 levels (extension

tl0_ 1 = 4.32, 0.01 < P < 0.001; flexion tl0_ 1 = 2.79,

0.05 < P < 0.02) from bout 6 to bout 10 (fig. 2, upper

panel). Thus, there was little change in extension and
flexion average total work over the 10 bouts during the

first wk of BR, but both extension and flexion work

increased significantly during exercise by the end of BR.

Mean average total work data for the 10 daily bouts on

day C - 3, BR 5, and BR 28 from figure 2 (upper panel)

are presented in figure 2 (lower panel). Compared with

C-3, there was no change in extension total work, and a

small but significant increase (t = 3.00, 0.005 > P < 0.02)

in mean average total work for flexion responses between

BR 28 and BR 5. Thus, there were no changes in exten-

sion and flexion mean average total work during the fast

wk (BR 5 vs C - 3), and progressively greater flexion

work performed during consecutive bouts and higher final

levels were evident by BR 28.

Thigh strength- There was a statistically significant

increase in IKE knee extension average (X right and left

legs) total work during BR (fig. 3, upper panel), while
total work for the NOE and TIE groups decreased by

BR 6 and remained at those levels throughout BR

(the group x time interaction term was significant:

F(8, 64) = 7.676, P = 0.0001). Compared with their
respective ambulatory control levels: on BR 28 the NOE

group average total work decreased significandy from

929 4- 80to 776 +_ 81 N-m (= -16%) and the IKE group

average total work increased significantly from 789 _+ 55

to 1000 4- 72 N-m (= +27%) (fig. 3, upper panel). Thus,
the IKE waining regimen not only terminated the

decreasing trend NOE and ITE in total work during BR,

but it also resulted in a significant increase in knee

extension total work. The unchanged response of average

total work in the ITE group (837 +_ 53 to 797 +_ 51 N-m)

indicated this waining regimen also attenuated the

decrease in but did not increase total work exhibited by

the NOE group. The levels of average total work for

flexion were about half as great as those for extension.

There were no significant changes in flexion average total
work (fig. 3, lower panel) in any of the experimentaJ

groups. The group x time interaction term was not

significant: F (8, 64) = 0.5332, P = 0.8547.
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There were no statistically significant changes in average

peak torque for extension or flexion during BR (data not

shown). But the pattern of extension responses (fig. 4)

was similar to those of average total work: all NOE mean

values were below zero, all IKE values were above zero,

and ITE values varied around zero. Gross average

(X fight + left + flexion + extension) worldrepethion of

the thighs also followed the response pattern of total work

and peak torque during BR: a statistically significant

increase with IKE from a control level of 120 + 8 to

144 _+ 10 N-m (= +20%) on BR 28, and no change with

NOE or ITE training. Muscular endurance was unchanged

during BR with all three regimens.

Shoulder strength- Gross average total work was

unchanged in all three groups during BR (fig. 5, upper

panel); the range was 346 + 29 N-m (NOE) to
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400 _+ 34 N-m (IKE). Total peak torque was unchanged

during BR with NOE (fig. 5, lower panel), but on BR 26

it increased significandy from a control level of 44 + 4

to 56 + 4 N-m (= +27%) with rrE and from 58 + 5 to

70 + 5 N-m (= +22%) in the IKE group. Shoulder force

production and fatique-enduranee index were unchanged

in all groups during BR.
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Discussion

The general significant findings were that during BR

lower extremity isotonic exercise training maintained

thigh (knee flexion and extension) total work, strength,
and force production, and increased shoulder strength;

while isokinetic lower extremity training not only main-

tained these functions but also significantly increased

knee extension total work and force production, and

shoulder strength.

Thigh (knee) responses- Some thigh responses

decreased (total work average extension by 16%) in the

NOE group. It is unclear why flexion total work and peak

torque were unchanged in all groups. If muscles involved
in flexion are used to a lesser extent than those involved

in extension movements during normal activity, the

flexion muscle groups could be less trained and therefore

less sensitive to detraining during BR. Perhaps body

movements during BR required more knee flexion than

extension force because it was not necessary to maintain

an upright posture; so knee flexion responses could have
been maintained while those for extension decreased.

Apparently maximal IKE flexor training was not

effective, while extensor training was very effective as

indicated by the significant 27% increase in extension
total work. Since flexion total work and strength were

unchanged, extension IKE training not only restored the
16% decrease in total work of the NOE group, but it also

increased total work by 27%; the combined increase was

43%. That extension total work decreased with NOE,

increased with IKE, but was unchanged with ITE training

indicates that the latter also exerted a significant training

effect, but not as great as with IKE training.

Contributory factors that could have influenced the

differing ITE and IKE work and strength responses

between the three regimens were time of exercise train-

ing, peak and average exercise training intensities, and

exercise energy utilization. Total daily exercise la,aining

time for IKE (both lower extremities) was 30 min/d

for warm-up, cool-down, rest, and exercise including

6.7 min/d of maximal work; daily exercise time for ITE

was 60 min/d including 40 rain of loads at or below 40%

of peak. XrO2, and 20 min/d of loads from 60% to 90% of
peak VO 2 (10). Peak training intensities during exercise

were 80% to 90% of peak "_O 2 for 12 mindd 0TE), and

100% (maximal) peak torque (-135 N-m) for 6.7 min
(IKE); average intensities were 50% of peak VO 2 (ITE)

and 100% of peak torque (IKE). Energy utilization in the

NOE group was 3.6 _+0.2 ml O2-min -1 .kg -1 (83 kcal/hr);

resting energy plus energy utilized during IKE training

was 8.9 +_0.5 ml O2-min-l.kg -I (214 kcal/hr), and
18.8 _+1.6 mlO2.min -1 .kg -I (446 kcal/hr) for the

60 min/d ITE regimen (10). Maximal peak torque exerted

by the ITE group during cycle exercise training, calcu-
lated from maximal isotonic exercise power, was about

112 N-m (table 1); so a substantial isokinetic-isometric

force component was acting during cycle exercise

training. This force component probably contributed to
the maintenance of extension peak torque during BR.

Novice cyclists exert most power on the downward or

push phase of the pedal rotation, i.e., a knee extension

force; so perhaps the thigh, leg, and hand-grip muscular

action during ITE and especially during IKE testing

provided some remedial training effect for extension total

work, but not for flexion total work. Neither exercise

regimen had an effect on thigh average flexion total work,

peak torque, or the fatigue-endurance index. Since peak

torque was not being utilized continuously during ITE,
peak torque flexion and extension responses may not have

been stimulated sufficiently to have been increased above

pre-BR levels in that group. In spite of the much shorter
total exercise time in the IKE group (6.7 rain versus

60 min for ITE), and the somewhat shorter exercise times

at near maximal levels (6.7 min versus 12 min for ITE),

the IKE group generally exhibited greater increases in
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thigh total work and force production responses compared

with ITE responses. But ITE training maintained thigh

average extension total work and peak torque.

Another possible factor contributing to impaired muscular

performance is the hypohydration which occurs in BR

subjects (refs. 12 and 13). Total body hypohydration

induced acutely (ref. 2) or chronically (ref. 3) reduces
some isometric muscular strength and endurance

parameters in normal, ambulatory subjects, and it could

well contribute to reduced strength during BR. The ITE

regimen maintained plasma volume during bed rest
(= -1.5 + 2.3%, NS), while it decreased significantly

in the other groups by 14.7 + 2.8% (NOE) and by
16.8 + 2.9% (IKE); red cell volume followed plasma

volume (ref. 12). Since the weekly IKE test was only five

maximal repetitions in 10 s, it seems unlikely that such a

short effort would be affected by a cardiovascular-

respiratory mechanism compromised by hypovolemia;

e.g., cardiac output or muscular blood flow. Red cell

volume (blood 02) was maintained with 1TE but it

decreased significantly with NOE and IKE. Perhaps the

unchanged plasma and red-cell volumes in the FIE group

were responsible for or at least contributed to mainte-

nance of the work and peak torque parameters.

Shoulder responses- Shoulder total work, force

production, and fatigue-endurance responses were

unchanged during BR in all groups. Support for body

movement and stabilization, as well as significantly

different vascular volume changes during BR cannot

account for these results; nor can the specific effects of

these two forms of exercise training. However, peak

torque (strength) was increased significantly in the two

exercise groups perhaps because the upper extremities

were used to stabilize the torso during both daily exercise

and weekly testing. Also, it is possible that the strength-
inducing effect of the weekly isokinetic test, coupled with

the more general isokinetic-isometric exercise training

component of the ITE training regimen, was sufficient to

contribute to the increased shoulder strength in the ITE

group.

In conclusion, it appears that lower extremity cycle

isotonic exercise training during BR can maintain and, in

one instance, increase isokinetic total work and strength

parameters. But specific lower extremity isokinetic

exercise training can maintain or increase these param-

eters to a greater degree than the isotonic exercise

training. These considerations, coupled with a work-rest

total energy utilization about half that of the isotonic

exercise training regimen, makes isokinetic _aining

protocols attractive for use by astronauts on extended

spaceflights.
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Abstract

Bernauer EM, Walby WF, Ertl AC, Dempster PT,

Greenleaf JE. Knee-joint proprioceptive sense-response

during 30-day 6* head-down bed rest with isotonic and

isokinetic exercise training. Med. Sci. Sports Exert. 1994.

To determine if daily isotonic exercise (ITE), or

isokinetic exercise (IKE) training coupled with daily leg

pruprioeeptive training, would influence proprioceptive
sense-responses during bed rest (BR), 19 men

(36 + SE 2 yr, 178 + 3 crn, 76.5 + 2.6 kg) were allocated

into a no-exercise (NOE) training control group (N = 5),

and isotonic exercise 0TE) (N = 7) and isokinetic

exercise (IKE) (N = 7) training groups. Training was

conducted during BR for two 30-rain periods/d 5 d/wk.

Only the IKE group performed proprioceptive training for

2.5 rain with each lower extremity before and after the

daily training sessions; proprioceptive testing occurred

weekly for all groups. There were no significant

differences in proprioceptive sense-response scores in the

pre-BR ambulatory period between the three groups.

Knee extension and flexion tracking responses were

unchanged with NOE during BIL but they were

statistically significantly greater (*) after BR in both

exercise groups when compared with NOE responses:
extension: NOE 80.7 + 0.7%, rYE 82.9* + 0.6%, IKE

86.5* + 0.7%; flexion: NOE 77.6 __.1.5%, 1TE 80.0 ___

0.8% (NS), IKE 83.6* + 0.8%. Although proprioceptive

sense was unchanged during BR with NOE, both ITE and

especially IKE training when combined with daily

proprioceptive training, significantly improved knee

proprioceptive sense-responses after 30 days of bed rest.

Introduction

Proprioceptive sense (or awareness) has been defined as

"perceived sensations about the static position or velocity
of movement (whether imposed or voluntarily generated)

of those parts of the body moved by skeletal muscles; and

perceived sensations about the forces generated during
muscular contractions, even when such contractions are

isometric, plus the vestibular sensation and inputs from

muscles and joints that are not necessarily perceived"

(ref. 11). The role of proprioception in basic motor
function is controversial with respect to the functional

roles of joint mechanoreceptors and muscle spindle

receptors (refs. 4, 10, and 11). The choice of passive
versus active muscle motion and position sense, and

interaction of speed and range of motion, have added to

the ongoing discussion (refs. 2, 9, and 12). Proprioceptive

information can be utilized to correct velocity and timing

errors induced by sudden perturbations of resistance

during multijoint movement (ref. 3). Proprioceptive

sensory ability decreases with tissue atrophy following

injury and immobilization (refs. 4 and 5). Rehabilitation
of an injury can restore range of motion and strength, but

may not restore proprioception sense.

Astronauts will be required to spend ever increasing

periods of time in microgravity, and Watt et al. (ref. 13)

reported degradation of limb position proprioception

immediately after eight days of weightlessness. More

astronauts will perform lengthy periods of extravehicular

activity involving physical work during construction of

the space station and microgravity-deconditioned pilots

land the space shuttle manually. Any decrease in

proprioceptive sense might cause a decrement in their

ability to perform these important motor tasks. Thus, the

purpose of the present study was to determine the effect

of isotonic (dynamic) and isokinetic lower extremity

exercise training on knee proprioceptive sense-response

during 30 days of 6 ° head-down bed rest.
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Methods

Informed, written consent was obtained from 19 men

(32-42 yr) who had passed a comprehensive examination

that included a complete medical history, physical

examination, treadmill test, and standard laboratory

biochemical analyses. All were non-smokers and none

reported taking nonprescribed medication. The overall

study, conducted in the Human Research Facility at Ames
Research Center, involved a 7-d ambulatory control

period, 30 d of 6° head-down bed rest (BR), and a 4.5-d

ambulatory recovery period.

The subjects were allocated into three groups (table 1):
(a) no exercise (NOE) training control (N = 5), Co) iso-

tonic exercise (ITE) training (Quinton Imaging/Ergometer

Table, model 846T, Seattle, WA 98121) (N = 7) and,

(c) an isokinetic exercise (IKE) training regimen (N = 7)

which included proprioceptive training and testing on a

computer controlled isokinetic ergometer (LIDO, Loredan

Biomedical Inc., Davis, CA 95617). The IKE group's

daily training regimen is presented in figure l(a), and the

ITE and IKE groups' weekly training and testing pro-

tocols in figure l(b). One 30-rain IKE training session

performed with each leg consisted of 2.5-rain warm-up,
five maximal extension-flexion repetitions in 10 s

followed by 50 s rest (performed 10 times), and a 2.5-min

cool-down period (within 15 rain). The 2.5-rain warm-up
and cool-down periods, performed in the a.m. and p.m.,

were devoted to proprioception training (PT) of both

extension and flexion with the right and left knees

(fig. l(b)). The other groups (NOE, ITE) did not engage

in daily propfioceptive training as they were controls. All

groups had four practice sessions, eight repetitions of the

2.5 rain proprioceptive routine, during the control period

before control day minus 5 (C - 5); this PT routine was

performed once during the warm-up period of the weekly

muscular strength test (day 6, LIDO peak) which con-
sisted of one bout of five maximal repetitions in 10 s.

Table 1. Anthropomelric and physiologic baseline data forthe three groups

Age,* Hr.,* Wt.,* S.A.,* Fat, Leg total

yr cm kg m2 % strength,*
Newton-m

No exercise (N = 5)

X 36 177 74.6 1.91 15.5 646

+_qE 2 2 5.3 0.06 2.4 38

Isotonic exercise (N = 7)

X 36 178 80.2 1.98 19.9 714

+_SE 1 3 1.5 0.04 2.2 42

Isokinetic exercise (N = 7)

X 36 177 74.3 1.91 11.0 704

+-qE 2 3 2.4 0.05 2.0 38

*Measured before the bed rest ambulatory control period.

Measured on ambulatory control day 3.
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Figure 1. (a) Daily isokinetic exercise training protocol; (b) weekly testing schedule for the isokinetic and isotonic training

groups: PT = proprioceptive training only for the isokinetic group. Proprioceptive testing (pro test) for all groups occurred

on day 6. The 100% indicates 60 mirgd training for both exercise groups.

One unit of the LIDO system houses the torque or force

measuring system (fig. 2-l); another the controllable

movement system (fig. 2-2) where a rotary load produced

by the main shaft pushes oil through electrically-

controlled valve openings. An adjacent dedicated micro-

controller senses shaft position and torque and, with a

combination of prediction and serve techniques, makes

shaft velocity relatively independent of torque (i.e.,

isokinetic operation). A serial data link provides two-way

communication between the torque-sensing unit

(figs. 2-1, 2) and an IBM (model AT) personal computer

(fig. 2-4). A bar, attached to the torque shaft, has a slide-

wire unit to which the subject's ankle is bound with a

velcro strap. This limb position measaring system
(fig. 2-3) slides along the bar as the knee rotates; the
constantly changing slide wire length is sensed in the
torque unit and provides lever-arm length for calculation
of force and work. Full excursion and retraction of the bar

is indicated by arrows on the visual biofeedback display

(fig. 2-5).
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This basic system was modified for proprioceptive testing
by inclusion of additional software which introduced

random perturbations into the load (resistance) of the

torque unit. Load development is generated by controlling

valve openings as a function of limb position during pre-

proprioceptive exercise. Then these valve openings are

duplicated during proprioceptive testing and training with

superimposition of random perturbations. These per-

turbations may be considered as a noise with a spectral

content, where lower frequency components are of higher

amplitude than higher frequencies, and energy content

decreases as the inverse square of frequency. In this

proprioceptive mode neither torque nor velocity is
controlled by the LIDO, only resistance to movement.

Velocity and torque are controlled by the subjects

depending on their ability to coordinate and respond to

the perturbations. The subjects followed a dynamically

expanding (representing knee extension) and contracting

(representing knee flexion) bar-graphed video display

moved randomly by the computer (fig. 2-5). They were

requested to follow the moving bar-graph with a hori-
zontal line on the display, the movement of which was

controlled by their flexion-extension movements, at a

speed of 60°/s. Thus limb position as a function of time,

not velocity, was tracked and scored.

Scoring was based on the integrated error between the

computer generated video moving bar graph--reflecting

knee joint (leg) position (heavier line), and the subject's

horizontal video line tracking response--reflecting knee

joint torque (lighter line)---as presented in a typical 5 s

analog display (fig. 3). Two left leg position-torque time

curves are shown. An error value (in degrees), obtained

from the difference between the computer-generated

position (fig. 3, heavy line) and the subject's tracking

response (not shown), was calculated by Fourier analysis
for each flexion-extension excursion. Five excursion error

values were averaged to obtain the final error score

presented as a percentage of correct (100) responses

(fig. 4). Higher scores indicated smaller errors.

Calibration of the LIDO digital head on three separate

days during the pre-ambulatory control period revealed
similar variability. Weights were placed on the calibration

arm (attached to the digital head) and allowed the weight

to fall through 180 ° five times. Allowing the weights to

fall in the opposite 180 ° arc indicated extension torque.

The mean errors (measured torque) for the flexion and
extension calibrations were not different; the correlation

coefficient between measured and expected torque was

0.99. More comprehensive discussions of procedures and

methods for the entire bed rest study have been published

(refs. 7 and 8).
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moving bar on the video display The test started with the

leg at full flexion at a joint angle of 101° and moved to full

extension at 28 ° below the horizontai (0°) The torque

curve (lighter line) is the force of the subject's response
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Figure 4. Mean (+_SE)proprioceptive response scores for

extension and knee flexion during ambulatory control

(C - 5) and weekly during bed rest for the three groups.

*P < 0.05 from corresponding C- 5, P < 0.05 vs. no

exercise, P < 0.05 vs. isotonic group.

The data were analyzed with appropriate dependent or

independent t-tests (I-IP-65 stat Pac-1, Hewlett-Packard,
Cupertino, CA 95014). Non-significant differences were

denoted by NS. Even though there were statistically

significant differences between some right and left limb
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proprioceptionscores,asdeterminedbyapooledpaired
t-test,datafromrightandleftlimbswereaddedsocom-
parisonscouldbemadebetweencombinedextensionand
combinedflexionresponses. This procedure corrected for
variations in dominant and non-dominant lower extremity

strength and coordination.

Results

The only difference in proprioceptive tracking responses

during the ambulatory control (C - 5) period among the

three groups was for knee extension: IKE vs. NOE

(fig. 4). Proprioceptive responses for NOE extension and

flexion tended to increase during BR 1, but they remained

or returned to ambulatory levels by BR 4. There were

statistically significant scores increased during BR in the

IKE group with peak levels occurring at BR 3 for flexion
(df= 13, P< 0.001) and BR 4 for extension (dr= 13,

P < 0.001). Scores for IKE were significantly higher
than those for NOE for both extension and flexion in

BR 3 and BR 4 (fig. 4). At BR 4 the ITE extension score

(86.5 + 0.7%) was significantly higher than the NOE

score (80.7 + 0.7%). At BR 4, both exercise groups'

flexion and extension responses were higher (P < 0.05)

than their respective control (C - 5) scores, while the
NOE flexion and extension scores were unchanged.

Percent changes (BR 4 vs C - 5) in proprioceptive
extension scores for the NOE, ITE, and IKE groups

were +2.0 (NS), +3.5 (P < 0.05), and +5.6% (P < 0.05),

respectively; and for flexion were +1.6 (NS), +4.4

(P < 0.05), and +7.2% (P < 0.05), respectively. In general,

the mean extension score (N = 5 data points) for each

group was higher (P < 0.05) when compared to corre-
sponding flexion data. Thus, in non-immobilized subjects

proprioceptive sense-responses were not degraded during
BR without exercise training, were improved significantly

only at the end of BR in the isotonic group, but were

improved significantly during BR in the isokinetic group.

Discussion

Daily lower extremity proprioceptive training by the IKE

group significantly increased their response scores over

that of the NOE group and, to some extenL over that of

the ITE group. There was some improvement in pro-

prioceptive tracking at the end of BR from the non-

specific exercise training performed by the ITE group.
This would lend support to the hypothesis that general

exercise training can increase proprioceptive performance

(ref. 1).

The proprioceptive test involved responding to sudden

perturbations in torque imparted to the lower extremity by

the LIDO ergometer. Muscular training resulting from

ballet dancing increased the dancer's ability to detect

slower angular velocities of knee joint motion (ref. 1).

However, the dancers were significantly poorer at

detecting static knee position than the control group.

Barrack et al. suggested that the differences between these

groups was most likely due to an increase in muscle

spindle sensitivity (gain) which occurs with ballet

training. Perhaps the non-specific muscular training

provided by the daily isotonic exercise in our subjects

also enhanced spindle sensitivity which facilitated their

ability to perform this velocity-based propdoceptive task.

The remaining difference between improvement of the

isotonic group, and the greater improvement in the

isokinetic group, was probably due to the specific daily

proprioceptive practice and additional familiarization

with the LIDO ergometer by the isokinetic group.

It was not possible to determine if the difference in

proprioceptive responses between the exercise groups was

due to changes in muscle spindle response alone, or to a
combination of improved proprioception and learning via

visual feedback enhancement. Proprioceptive information

alone, i.e., without visual feedback, can correct up to 95%

of velocity and timing errors associated with sudden

perturbations in resistance during a multijoint movement

sequence (ref. 3). Since our experimental design focused

on position (tracking) errors associated with sudden

changes in torque, it cannot be determined if either
exercise mode would have influenced the muscle

spindles' ability to detect timing errors associated with

these perturbations.

Propdoceptive sense-response decreases significantly in

muscles atrophied by injury and immobilization, and

recovers during rehabilitation (refs. 4 and 5). Perhaps

2.5-min per week of proprioceptive testing and general
body movement provided sufficient stimuli to maintain

proprioceptive sense-response levels in the NOE group.

The subjects were not immobilized during BR: they

could move freely in lateral directions while in bed

and were moved via guerney to other locations for

their daily exercise training, showering, and testing.

Also, the NOE group maintained stable body weight

(= -1.01 + 0.81 kg,NS) during BR by consuming

2,678 + 75 kcaYd. The increased proprioceptive sense-

response in the isotonic group must have involved

additional stimuli from that provided by the exercise

training; e.g., maintenance of or increased blood flow in

the lower extremity muscles, or perhaps maintenance or
enhanced neuromuscular coordination.

Some astronauts have exhibited altered proprioceptive

function in microgravity. Proprioceptive illusions,

perceived movement of stationary walls, floor, or

horizontal surfaces, were experienced by one astronaut

5O



while performing arm and knee bends (ref. 13). The first

illusion, which occurred only inflight with eyes closed,
was a feeling that a wall was moving toward him when

his arms were flexing; but there was no feeling that the

wall was moving away during arm extension. This

illusion was present with eyes closed and open 2 hr after
landing and disappeared within 24 hr. The second illusion

occurred during deep knee bends only after landing and

felt as if the floor was oscillating like a trampoline. It was

present with eyes closed and open. Like the ftrst illusion,

he could "feel" the floor moving but he couldn't see it

moving. Thus, in some astronauts the ability to separate

self-generated from externally-generated limb movements

is compromised for up to 24 hr posfflight, the degraded

proprioceptive function reduces awareness of the position

of a relaxed limb, and muscular contractions improve

somewhat the diminished proprioception.

Although there was no propdoceptive degradation in the

NOE group, it is clear that daily isotonic exercise training,

and especially daily isokinetic exercise training plus

proprioceptive training, can improve normal propriocep-

five ability for detecting lower limb velocity errors during

bed rest. This enhanced proprioception sense-response

induced by isotonic and isokinetic exercise training

during bed rest may be applicable for assisting recovery

of bedridden patients and for assisting astronauts in the

performance of their physical tasks during exposure to

microgravity.
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GREENLEAF, J.E.,R. BULBULIAN, E. M. BERNAUER, W. L. HASKELL,
AND T. MOORE. Exercise-training protocols [or astronauts in microgravity.
J. Appl. Physiol. 67(6): 2191-2204, 1989.--The question of the composition
of exercise protocols for use by astronauts in microgravity is unresolved.
Based on our knowledge of physical working requirements for astronauts
during intra- and extravehicular activity and on the findings from bed-rest
studies that utilized exercise training as a countermeasure for the reduction
of aerobic power, deterioration of muscular strength and endurance, dec-
rements in mood and cognitive performance, and possibly for bone loss,
two exercise protocols are proposed. One assumes that, during microgravity,
astronaut exercise physiological functions should be maintained at 100%
of ground-based levels; the other assumes that maximal aerobic power in
flight can be reduced by 10% of the ground-based level. A recommended
prescription for in-flight prevention or partial suppression of calcium (bone)
loss cannot be written until further research findings are obtained that
elucidate the site, the magnitude, and the mechanism of the changes.
Hopefully these proposed exercise prescriptions will stimulate further re-
search and discussion resulting in even more efficient protocols that will
help ensure the optimal health and well-being of our astronauts.

isotonic exercise; isometric exercise; isokinetic exercise; bed rest; weight-
lessness; astronaut energy metabolism

WHEN THE United States' Space Station Freedom is fully

operational, because of its size, the occupants will be able
to live and work in it with few, if any, physical con-

straints. Maintenance of normal ambulatory body weight
in crewmembers (91) and in unrestrained bed-rested men
(29, 30) requires 2,800-3,100 kcal/day, the range neces-
sary for maintenance of body weight in normal ambula-
tory men on Earth. Therefore, it is highly probable that

the requirements for energy utilization, including physi-
cal exercise and exercise training, will be essentially the
same in microgravity as in the eugravitational field (60).

It would seem logical and prudent for those who must
function unerringly in the hazardous space environment
to acquire and maintain a sufficient level of body speed,

power, strength, endurance, and cognitive performance
(i.e., physical fitness) to perform daily tasks efficiently
with sufficient reserve capacity to optimize survival in

emergency situations. The question of optimal exercise
prescriptions (involving type, frequency, duration, and
intensity) to be used by astronauts on the ground before

flight, in flight, and during postflight recovery is unre-

solved. To date there has been no structured or manda-

tory exercise-training program to assist astronauts in

this important phase of their ongoing flight training
program. Some investigators, however, have suggested
that astronauts should not engage in preflight endurance
training (50) and that this type of training may adversely
affect the blood pressure control system, resulting in

decreased postflight orthostatic tolerance (81).
As time of exposure to microgravity lengthens, appro-

priate exercise training regimens will probably become

more important. On short flights (<15 days) few if any
of the body systems affected by microgravity are com-
promised severely, so intensive exercise training has not
been necessary as a required countermeasure (69, 70). It

is still an open question whether an attempt should be
made to maintain all physiological systems at the eu-
gravitational level in all astronauts during prolonged

exposure (>30 days) to microgravity. How much is
enough? Would deterioration of mental function follow
deterioration in physiological function?

Our working hypothesis is that the types of exercises
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(isotonic, isometric, isokinetic) used to acquire and main-
tain physical fitness on the ground will be the same types
required to maintain fitness during exposure to micro-
gravity. The undecided aspects of the training program
are type, intensity, duration, frequency, and specificity.
An example of the latter is the probable (but not con-
firmed) greater selective decrease in function in micro-
gravity of the antigravity elbow and knee extensor mus-
cles compared with function of the antagonistic flexor
muscles (79).

The purposes for this paper are 1) to review the
physical working requirements for astronauts during in-
tra- and extravehicular activity; 2) to review briefly the
important and applicable findings from microgravity
simulation (mainly bed rest) studies regarding the use of
exercise training as a countermeasure for reduction of
aerobic exercise capacity, orthostatic intolerance, dete-
rioration of muscular strength and endurance, adverse
changes in mood and cognitive performance, and possibly
for bone loss; 3) to review the pertinent basic data for
the formulation of exercise prescriptions; and 4) from
the results of 1, 2, and 3, to present suggested exercise

prescriptions for use in microgravity conditions.

ASTRONAUT PHYSICAL WORK REQUIREMENTS

Intravehicular Activity

Apollo. Exercise metabolic and cardiovascular re-
sponses have been measured only preflight and postflight
from the first five (7-11) and final four (14-17) Apollo
flights (67, 69, 70). Stress tests were not conducted after
flights 12 and 13 because of postflight quarantine re-
quirements. Submaximal cycle ergometer tests were con-
ducted by measuring oxygen uptake (Vo2) at heart rates
of 120, 140, and 160 beats/rain at 6, 9, and 12 rain,
respectively, during the increasing exercise loads. The
160-beats/rain heart rate results from an absolute exer-
cise load that is equivalent to a relative '_o2 of -75% of

the peak "_o2. The general findings from Apollo 7-11
astronauts (n = 15) were that the mean _'o2 at 160 beats/
rain decreased from the preflight level of 2.44 _+ 0.09 to
1.93 ___0.09 (SE) l/rain (4 -- -21%, P < 0.001) on the
1st recovery day, and it was 2.34 ___0.13 1/min (A ------4%,
NS) by the 2nd recovery day, 24-36 h postflight (67, 70).

Comparable results from Apollo 14-17 astronauts (n =
12) were that _'o_ at 160 beats/rain decreased from the

preflight level of 2.68 +_ 0.14 to 2.23 --4-0.12 l/rain (A -----
--17%, P < 0.05) on the 1st recovery day and was 2.49 +
0.11 l/rain (A = -7%, NS) 24-36 h postflight (69, 70).
Thus the magnitude of the reduction and rate of recovery
of exercise capacity of some Apollo astronauts were
similar. The 17-21% reduction in submaximal _'o2 dur-

ing these short-term flights (<15 day.s) was of the same
magnitude as the reduction in peak Vo2 in middle-aged
men undergoing -6 ° head-down bed-rest deconditioning
between 21 and 30 days without remedial exercise (29).

Skylab. The type, duration, and frequency of exercise
training undertaken by the Skylab astronauts preflight
and during the three missions (II, 28 days; III, 59 days;
IV, 84 days) were not specified as a basic flight require-
ment; i.e., there was no mandatory exercise program (71).
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Exercise facilities on the ground consisted of a quarter-
mile track and a well-equipped gymnasium with weight-

training equipment, racket courts, and cycle ergometers.
In-flight exercise equipment on Skylab II included only

a cycle ergometer and an Exer-Gym isometric friction
rope-pull device. A Mini-Gym isokinetic device and ten-
sion springs were added on Skylab III. A Teflon-coated
inclined plate was added on Skylab IV: the crewmen were
tethered from the waist and over their shoulders to the
floor and slid stocking-covered feet over the surface as

though they were walking or jogging on a treadmill (71).
During the 18-day preflight isolation period the Skylab

II crew mainly rode the cycle ergometer and played

racquetball. The Skylab III crew ran 2-7 miles twice per
week, rode the ergometer, and lifted weights but did not
play racquetball. The Skylab IV crew ran more fre-

quently, used the ergometer minimally, and did not play
racquetball or lift weights (71). The total quantity of in-
flight exercise training increased progressively during
succeeding missions: 0.5, 1.0, and 1.5 h/day on missions
II, III, and IV, respectively. The Skylab II crew used only
the ergometer (isotonic exercise); the mission III crew
used the ergometer, Exer-Gym (isometric exercise),

springs (isotonic exercise), and the Mini-Gym (isokinetic
exercise); and the mission IV crew used all the above

devices plus the treadmill {isotonic exercise). The only
quantitative data of in-flight exercise training were ob-
tained from the ergometer sessions. The means were 31,
65, and 71W-rain. kg -1- day-1 for the respective missions
of 28-, 59-, and 84-days duration. The doubling of the

quantity of ergometer exercise was associated with better
maintenance of submaximal Vo2 capacity in flight and

faster recovery postflight on the last two missions (71,
80).

Exercise metabolism was measured preflight, in flight,

and postflight during the Skylab missions with precision
mass spectrometry (60, 61, 68, 71). Peak _ro2 was meas-
ured in the Skylab crews preflight, but since there was

no organized .effort to measure it during or after flight,
submaximal Vo2 was measured instead on the ergometer
at a heart rate of 160 beats/rain (-75% peak Vo2). Mean

preflight submaximal _rO2 for the nine crewmen was 36
_ 2 ml.min-l.kg -1 (range 28-46 ml.min-l.kg -1) (71).
The extrapolated mean peak _/o2 would have been -45

ml. rain -_. kg-'.
The in-flight exercise capacity test was performed for

5 rain each at -25, 50, and 75% of their preflight peak
_}o2 using the cycle ergometer (where load was independ-
ent of pedaling rate). Results from Skylab II indicated
no change in resting metabolism during flight, and a
small nonsignificant decrement (by 0.2-0.3 l/rain) in Vo2
with performance of the three exercise levels (60). If
similar absolute exercise loads were used both preflight

and in flight, these observations suggest that peak Vo2
were decreasing during flight. The exercise heart rate
responses at the 75% load postflight in missions II and
III (61, 64) tend to substantiate this hypothesis. Post-
flight exercise heart rate responses after mission II were
still elevated after 20 days, but this elevation had re-
turned to normal by the 4th day after Skylab III. There
were no changes in the postflight exercise (75%) heart
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rateresponsesof the SkylabIV crew, suggesting they
not only maintained, but probably increased somewhat,
their aerobic power during flight (71). However, estima-
tion of aerobic power from changes in heart rate is
complicated by factors such as microgravity-induced hy-
povolemia, changes in vascular and cardiac dynamics,
and motivational factors. One firm conclusion is that

exercise capacity was maintained better with succeeding
flights coincident with longer exercise periods and more
diverse modes of exercise. Care must be taken in ascrib-

ing the maintenance of aerobic power in the mission IV
crew to the additional work on the "sliding treadmill,"
since there was increased utilization of all exercise de-

vices compared with mission III participation. The crew
also believed (subjectively) they had increased their aero-
bic power in flight because of the perceived decrease in
effort required and the increased ease with which they
accomplished their periodic exercise testing as their 84-
day flight progressed (G. Cart, personal communication).

Isokinetic strength and endurance were measured at
18 days preflight and at 5 days postflight on a Cybex
dynamometer. After a thorough warm-up, peak torque
{mean of 10 repetitions) was measured for elbow (arm)
and knee {thigh) flexions and extensions at a rate of 45"/
s (76). Compared with Skylab II, results from mission
III showed less decrement in postflight peak torque for
the arm but the same or greater decrements in peak
torque values for the thigh {Table 1). The magnitude of
the decrease in thigh strength was about twice that of
the arms. In mission IV the mean decreases in both limb

strengths were about equal, and the thigh decreases were
substantially less than those during the first two missions
reflecting perhaps the increased duration and intensity
of leg exercise training. These 5-6% reductions in peak
torque in the arms and thighs were similar to those
measured in men who underwent no remedial exercise
training during 30 days of -6" head-down bed-rest de-
conditioning {28).

Space Shuttle. As mentioned previously, there is no
structured preflight exercise training program for Space
Shuttle astronauts. The majority maintain good physical

condition through self-directed weight- and aerobic-
training activities consisting of running-jogging, cycling,
racquetball, and squash. Although normal living and
working in microgravity is not demanding physically,
maintaining good physical fitness increases the astro-

TABLE 1. Mean percentage changes in peak torque
of the right arm and right thigh flexor and extensor
muscle groups after the Skylab missions

SkylabII SkylabIIl SkylabIV
(28 days} (59days) (84 days)

Arm {elbow)
Flexors -8 -3 -0
Extensors -10 0 -10

Mean -9 -2 -5

Thigh {knee)
Flexors -10 -19 -14
Extensors -20 -21 +2

Mean -15 -20 -6

Values are in percent {from Ref. 80).

nauts' confidence and mental fitness to meet unexpected
emergency situations; e.g., extravehicular activity (EVA),
egress, or escape (T. Moore, personal communication).

In-flight exercise has been limited to use of the non-
motorized passive treadmill where the astronauts lean
forward and push against movable treads. The effect
approximates jogging or running uphill on a slight grade.
The treadmill was first flown on the third Space Shuttle
flight (STS-3) and has flown on every subsequent Space
Shuttle mission. There is no mandatory in-flight exercise
program, hence the large variability in use of the tread-
mill. The Space Shuttle pilots are the most compulsive
users to ensure maintenance of leg strength and endur-
ance for rudder and brake pedal operation during reentry

and landing. Heart rates of 140-150 beats/rain have been
reported during treadmill exercise (T. Moore, personal
communication). No specific muscle-exercising devices
are flown because of the minimal requirements for intra-
vehicular physical work.

Extravehicular Activity

Although intravehicular metabolic function had been
measured directly by.mass spectrometry (60), it was not
possible to measure V02 directly during EVA, so energy
utilization had to be estimated by indirect methods dis-
cussed below.

Gemini. Energy utilization during EVA was limited by
the heat removal capacity of the suit's life support sys-

tem. The upper limit was 225-250 kcal/h. Exercise rates
>250 kcal/h {V02 ~0.8 l/rain) caused progressive in-
creases in body temperature, and the astronauts reduced

their working rates until they felt comfortable.
Apo//o. Greater exercise loads during EVA were per-

mitted by the use of a liquid cooling garment worn next
to the skin. Body heat was transferred from the skin to
the cool plastic tubing by conduction. The heat removal
capacity of this suit was increased to _500 kcal/h (89).
The average metabolic rate of 12 astronauts (Apollo 11,
12, and 14-17), measured by temperatures of the incom-
ing and outgoing suit cooling liquid, during 28 lunar-
surface EVA sorties (involving scientific package deploy-
ment, geological station activity, working overhead, and
lunar rover vehicle operations) was 235 _ 5 (SE) kcal/h;
average time of these EVAs was 5.7 ± 0.5 h. The average
speed of walking for each 2.9 km of lunar surface covered
was 2.4 km/h with a mean metabolic rate of 300 kcal/h.
Results from a kinematic analysis showed that manipu-
lative tasks were conducted in the EVA suit more rapidly
than at eugravity, but at a greater metabolic rate. This
was probably due to the hobbling effect of the pressurized
suit.

Estimated average metabolic rate during microgravity

EVA in seven Apollo astronauts {flights9 and 15-17)

was <242 ± 59 (SE) kcal/h (n = 6),and average duration

ofEVA was 1.05 ± 0.12 h (89).The EVA on these flights

consisted of one astronaut retrievingthree film cannis-
ters while another astronaut stood in the spacecraft
hatch and observed.

Sk'ylab.Microgravity EVA during Skylab missions was

similarto that during Apollo flights.Measurements of

metabolic rateswere estimated only from the tempera-
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ture differential of liquid in the cooling garments and
from heart rates (89). The latter were compared with
heart rate data taken from the in-flight ergometer tests.
These EVAs included erection of solar panels, canopy,
and an antenna and replacement of a gyro package.
Average EVA time for 19 sorties with the nine men was
4.2 _+ 0.7 h (range 0.6-6.9 h), and the metabolic rate was
238 + 12 kcal/h. The greatest load (500 kcal/h) occurred
on the first EVA of Skylab I, when a restraint strap on

the solar panels was being cut (89). Data from Russian
cosmonauts were also within these ranges of energy
expenditure (1, 48, 84, 88), and rectal temperatures (T_)

reached 37.8°C during EVA from the Salyut-6 station
(1).

The crew reported that it was easier to maneuver in
microgravity EVA than during water immersion in eu-
gravity. It was clear here also that the upper limit of
physical activity was determined by the heat removal
capacity of the suit and not by the physical working
capacity of the astronauts. Thus the self-paced exercise
loads of astronauts during microgravity and lunar surface
EVA were ~240 kcal/h; the rate during Moon walking

was 300 kcal/h (89).
Whittle and colleagues (92, 93) have performed some

very interesting biostereometric studies on the Skylab

astronauts involving three-dimensional measurements of
body form from which various volumes were calculated.
From the volume changes in the leg segments, the dura-
tion and energy cost of the in-flight exercise training,
and caloric intakes, they have concluded that an exercise
load of 80-100 W- rain. kg lean body mass -1. day -_ would
be necessary to prevent in-flight muscle atrophy of pre-
sumably the thigh and leg muscles. This represents 30-

60 rain of hard cycling daily. Sixty minutes per day of
hard intermittent leg cycling (60-90% of peak V02) main-

tained peak Vo_ in seven men during 30 days of -6 °
head-down bed rest {29). A second conclusion was that
caloric intakes of 47-51 kcal-day -_ .kg lean body mass -_

(2,880-3,121 kcal/day) were required to maintain lean
body mass and fat content. These levels of caloric intake
agree nicely with those intakes required to maintain body

weight in prolonged-bed-rested men (29, 30, 37).
Space Shuttle and Space Station. The total heat re-

moval capacity on the current EVA suit is ~2,513 kcal
(10,000 BTU), and the greatest rate is 503 kcal/h (2,000
BTU/h) {H. Vykukal, personal communication). The

mean steady-state operational range is 213 kcal/h (850
BTU/h), which is somewhat lower than the 235- to 240-
kcal/h range utilized by the Apollo and Skylab crews.
The upper limit of 503 kcal/h, equivalent to V02 of -1.7
1/min, is only half of the peak aerobic capacity of 3.4 l/
min (45 ml-min -1. kg -1) with leg exercise, which is about
the average for the total astronaut corps. Constant leg
work at this level could be continued for no more than 5

h. Since peak V02 with dynamic upper body (arm) exer-
cise is ~70% of peak V02 with legs, 50% of. peak _'02
with legs is equivalent to -70% of arm peak V02, which
may be close to the limit for heat removal for 5 h. Fatigue
may stop the arm exercise sooner.

There have been 13 two-crewmember EVAs during
previous Space Shuttle flights. The physical demands
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during these EVAs varied and depended on the EVA
mission requirements; these have included testing of
tools and equipment, satellite retrieval and repair, and
simulated space station construction. Astronauts' subjec-
tive ratings of perceived exertion during the EVA have
ranged from relatively easy to extremely difficult. The
average metabolic rate for those 26 EVAs was 199 kcal/
h, and the average duration was 5.5 h (T. Moore, personal
communication). Since most EVA work is performed
with the arms, forearms, and hands, with additional work

necessary to overcome the elastic recoil of the suit pres-
sure of 4.3 psi, significant upper body muscle fatigue can
occur. The almost exclusive use of upper extremity mus-
cles will result in lower heat production than if the larger
lower extremity muscles were used. Consequently the
space suit that utilizes liquid cooling and ventilation

appears to function quite efficiently. There have been no
subjective complaints of astronauts overheating during
Space Shuttle EVAs.

Exercise thermoregulation in eugravity is such that

the equilibrium level of T_ during isotonic exercise, at a
load equivalent to 50% of the peak._7o2, is 38.0 __ 0.1°C

and is independent of the absolute Vo2 (4, 34, 73). At the
same relative Vo2 (i.e., 50%), these different aerobic
powers will be reflected in heart rate differences among
subjects but not in core temperatures {34). The greater
heat production in subjects with higher aerobic power is

dissipated via greater heat loss, mainly .by evaporation
(27). Thus, astronauts with higher peak V02 will be able
to work at higher absolute energy levels (V02), but their
greater mandatory heat production and dissipation loads
will limit working time because of the suit's finite heat
removal capacity.

The type of exercise training performed during 14 days
of bed rest affects the core temperature response to
supine dynamic exercise. The equilibrium level of T_
during supine isotonic ergometer leg exercise is approx-
imately inversely proportional to the intensity level of
exercise training during 14 days of horizontal bed-rest
deconditioning (38). Isometric exercise training aug-
ments the hyperthermic response to exercise. Compared
with the equilibrium level of T_ during ambulatory con-
trol supine exercise (37.50°C), the comparable levels after
isometric (37.92°C), isotonic (37.72°C), and no exercise
training (37.75°C) were all elevated. The greatest differ-
ence in T_ was 0.42°C after the isometric-training regi-
men. The mechanism appears to be a proportional re-
duction in tissue heat conductance, which may be caused,
in part, by hypovolemia and by a decrease in peripheral
vascular function (21, 38). It appears that a penalty must
be paid in higher exercise core temperature as a result of
the various exercise-training regimens employed during
bed-rest simulations. It is not known whether this exces-
sive exercise-induced hyperthermia occurs in astronauts

in microgravity.

EXERCISE TRAINING AS A COUNTERMEASURE

The purpose for the use of countermeasures is osten-
sibly to permit astronauts to function productively, per-

haps not necessarily normally, during exposure to micro-
gravity. Major factors that could impair performance
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during long-term exposure to microgravity are increased

risk of fracture on return to eugravity or partial gravity;
decreased aerobic power, muscular strength, and endur-
ance (fatigue); and deterioration in mood and psycholog-
ical state (faulty decision making). The adverse conse-
quences of all these factors, plus orthostatic intolerance
(tendency to faint), could be accentuated when micro-

gravity-acclimated astronauts are exposed to increased
gravitational fields {e.g., Moon 0.2 G, Mars 0.4 G, Earth
1.0 G, and reentry accelerations >1.0 G). The major
question that arises when prescribing various counter-
measures is, How much is enough? Is it necessary to
maintain all body systems and functions at the eugravi-
tational level? Is it possible to do so? If it is necessary
and possible, what are the penalties in time, possible
injury, and astronaut morale? And finally, are there
adverse consequences for full maintenance? Since it is

almost certain that various kinds of exercise-training
protocols (prescriptions) will be used as countermeasures

in prolonged flights, it is necessary to try to determine
what, if any, adverse consequences might occur in phys-
ical (aerobic) performance, orthostatic tolerance, mus-

cular strength and endurance, bone integrity, and psy-
chological performance.

Aerobic Power

Changes in peak _'o2 have been measured many times
before and after prolonged bed rest (36, 39), and the
results have been reviewed recently (12). The general
consensus is that nearly all types and durations of exer-
cise-training regimens performed during bed rest will
attenuate the decrease in aerobic power. In only five
studies (10, 29, 62, 66, 77), however, has complete infor-

mation been reported where meaningful quantitative

comparisons can be made between exercise type, dura- _,
tion, and intensity and the effect of exercise training on
the level of maintenance of aerobic power (Table 2). In

only two studies (10, 29) were positive training responses
reported; i.e., peak aerobic power was higher, after than _,
before bed rest. The mean increase in peak Vo2 of 16%

in four untrained subjects who exercised for 30 rain/day
(Table 1) on a horizontal bed that moved laterally be- ._
tween two vertical trampolines was remarkable (10). A ._

second group of untrained subjects from the same study _o
who exercised in the horizontal position on a cycle er- "_
gometer at 31 ml O_.min-' .kg -1 increased peak Vo2 by

8.5%. In contrast, eight other subjects who endurance _o
trained before bed rest were not quite able to maintain "5
their peak aerobic power (A = -4.6 to -6.6%) during bed "_
rest despite more intensive in-bed exercise training "_
(Table 2). Thus, previously untrained subjects improved -_
their aerobic power during bed rest while previously
trained subjects could not, even though their training
intensity during bed rest was greater than that of the
untrained group. The fact that untrained men have a "6

greater range for increasing their aerobic power (90) may
be a partial explanation for these findings and for those
of Rodahl et al. (66). In the latter study four men (peak cq
_7o2 2.5-3.2 l/rain) essentially maintained aerobic power
during 24 days of bed rest while undergoing exercise
training loads of only 100 W (600 kg-m/min) for 1 h/day
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(Table 2). Performance of intermittent cycle ergometer
leg exercise (60-90% peak "_o2) for 60 rain/day changed
peak _Zo2 by +2.6% (NS) in seven men who were mod-

erately trained before bed rest (29). This integrated

exercise regimen was just below the level for injury. In
the same study the post-bed-rest _Zo2 was decreased by

9.1% (P < 0.05) in the isokinetic-training group and by

18.2% (P < 0.05) in the no-exercise-training control
group (not shown on Table 2).

Thus, high-intensity (75-90% peak 402) isotonic ex-

ercise training for 1 h/day will maintain aerobic power

in moderately trained subjects during prolonged bed rest.
However, if the prescription for the equilibrium level of

aerobic power during microgravity can be lowered to 90%
of pre-bed-rest flight levels, then intensive isokinetic
exercise training can be used to "maintain" not only

muscular strength and endurance but also the 90% level
of aerobic power.

Orthostatic Tolerance

Orthostatic is defined as "of, relating to, or caused by
erect posture" (25), so responses to lower body negative
pressure and acceleration are not discussed. The practi-
cal problem is to devise maintenance and/or remedial

procedures that will allow deconditioned astronauts to
overcome the tendency to faint when exposed to in-

creased gravitational fields or the upright posture. Since
it is almost certain that various exercise-training regi-

mens will be used as countermeasures in microgravity, it
is necessary to determine whether these regimens result
in accentuated orthostatic intolerance.

There is some evidence from cross-sectional studies

that ambulatory endurance-trained men have signifi-
cantly lower tilt-table tolerance, but a much greater

number of investigators have concluded that these men
have unchanged or somewhat higher tolerances (13, 14,

22, 23, 35). The major question is whether the exercise
training per se modifies tolerance. Results from short-

term (12 days, isotonic exercise) and long-term (6 too,
isotonic and isometric exercise) longitudinal training

studies indicate no significant change (in one case an
increase) in tolerance to 60- to 90-rain sessions of head-

up tilt when the subjects were tested hydrated and eu-
thermic (33, 35). In addition, the reduced tilt tolerance

after bed rest was not altered b.y exercise training during
bed rest with changes in peak Vo2 from 0 to -20% (41).

On the other hand, there is other evidence that sug-

gests greater intolerance during tilting in dehydrated
men after they were heat acclimated and exercise trained;
i.e., the acclimation accentuated the intolerance with a

possible interaction with the dehydration (31, 32). These
findings, and those indicating that some endurance-
trained men have a more labile blood pressure control

system and significantly lower orthostatic tolerance (22,
43, 81), indicate an incomplete understanding of the

effects of exercise training and heat acclimation on the

control of blood pressure and its interaction with ortho-
static tolerance.
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MUSCULAR STRENGTH AND ENDURANCE

Ambulation

There is no doubt that muscular strength and endur-

ance are increased by exercise training in normal ambu-
latory subjects (4). The mechanism(s) of the increase is
not entirely clear but involves adaptive responses to
increased muscular tension. Some of these responses are

increased protein synthesis leading to a greater number
of cellular myofibrillar contractile elements (actin and

myosin); increased cellular water and potassium content;
increased mitochondrial enzyme activity resulting in

more efficient energy transformation from pyruvates and
fatty acids; increased capillarization, blood flow, and
oxygen delivery to muscle cells; and increased "psycho-
logical threshold" so that more muscle cells are activated
(recruited) during a contraction.

An essential compound in this process is water. Results

from a study (9) where maximal isometric strength and
isotonic leg endurance (ergometer) were measured after
3 days of acute dehydration (2,887 kcal/day, 1,066 ml
H20/day) and 3 days of starvation (no food or water)
indicated mean strength losses (left and right shoulder
extension, elbow flexion, and knee extension) of 9.7-
10.4% with dehydration and starvation; the hydrated
control group mean loss was 7.5% caused, in part, by the
high-protein diet. Endurance to number of sit-ups in 2
min decreased significantly by 9% with dehydration and
by 13% after starvation. There were similar reductions
in ergometer endurance. It is clear that muscular endur-
ance is decreased in dehydrated ambulatory subjects (26).

Bed Rest

The mean percent changes in maximal isometric
strength for various muscle groups after 7-120 days of
bed rest are presented in Table 3. In general, there were
decreases in strength of all muscle groups during bed-
rest deconditioning. The greatest apparent increase in
strength was by 2% after isotonic exercise training for
120 rain/day during 70 days of bed rest (95). The mean
decreases in strengths (-6 to -8%) in the smaller muscle
groups (handgrip, forearm, and arm) were only half of
the mean decreases in the larger muscle groups (-11 to
-24% in the back, abdomen, thigh, and leg). There

appears to be a significant progressive decrease in hand-
grip strength with increased duration of bed rest without
remedial exercise. Data from Table 3 are plotted in Fig.
1B against duration of bed rest. There is a progressive
decrease in strength in both small and large muscle

groups with increasing duration of bed rest without re-
medial exercise (Fig. 1). On the other hand, during bed
rest with remedial exercise, the range of strength changes
was only +2 to -11% (Table 3). Thus, with the exception
of abdominal and handgrip strengths, cycle ergometer
exercise training during bed rest essentially maintains
strength in all other muscle groups (Table 3, Fig. 1).
Furthermore, the significant reduction in handgrip en-
durance, at 40% of pre-bed-rest maximal handgrip force
during bed rest with no remedial exercise, was eliminated

with 1 h/day of isotonic (cycle ergometer) and isometric
leg exercise during 14 days of bed rest (40). In some cycle
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TABLE 3. Mean percentage changes in maximal strength of various muscle groups after bed rest

Ref.

Bed-RestExerciseSchedule

No. No. Exercise
subjects days duration, Exercise Exercise Strength

bed rest rain/day type position measure,days

%Change inMuscleGroupStrength

Small

Hand Forearm Arm Back
grip

Large

Abdomen Thigh AnteriorPosterior
leg leg

Fridenetal. 14 7 None None
(24)

Trimble etal. 8 7 None None
(85)

Kozlovskaya et 18 14 None None
al. (51)

Greenleaf et al. 7 14 None None

(40) 60 ITE*
60 IME

Taylor et al. 6 21 None None
{79)

Birkhead et al. 2 24 60 ITE*
(7)

Birkhead et al. 4 42 None None
(6)

Deitrick et al. 4 42- None None
(18) 49

Kakurin et al. 3 62 None None
(47) 3 62 ITE*

Yeremin et al. 1 70 None None
(95) 3 70 120 ITE"

3 7O 120 ITE_
Panov et al. 1 72 None None

(64)

Krupina et al. 10 120 None None
(54)

Grigor'yeva et 14 120 None None
al. (42)

Mean

16

-5

0

15 0

Sup 15 -1
Sup 15 +1

22 -3

Sup

Sup

25

43

43-
50
63
63
72
72
72
11
22
36
44
64
95

120

Sup

Sup
Sup

0

0
-2
-8

-12
-27
-27

-8

-2

-5

-7 -9 0

-5 -7

-9 -16

0 -13 -21

-19
-8

-27 -28 -39 -48 -36 -57 -37
+1 +1 -2 -11 +1
+2 +1 -2 -6 -2

-39 -34

-6 -8 -7 -15 -24 -11 -22 -17

Allsubjectswere males.Sup,supineposition;ITE, isotonicexercise

ergometer tests, the arms were used for stabilization,

which may have induced a training effect. Thus, leg

exercise training may assist with maintaining handgrip
endurance.

The few data available on maximal isokinetic strength

during bed rest (Fig. 1A) indicate greater strength in-

creases in the grip, forearm, and arm muscles and about

the same levels of decreases in strength of the leg muscles

compared with the classical isometric data.

Bed Rest, Immersion, and Microgravity

Percent changes in strength of the anterior tibial (an-

kle dorsal flexion) and triceps surae (ankle plantar flex-

ion) muscle groups have been measured isokinetically at

four velocities (0, 60, 120, and 180°/s) before and after 7

days in microgravity and immersion (Fig. 2), 110 and 237

days in microgravity (Fig. 3), and 120 days of head-down

bed rest and 110-237 days in microgravity (Fig. 4). Clas-

sical maximal isometric strength is measured at 0°/s on

the isokinetic ergometer because the joint does not move.

With the 7-day exposures both plantar and dorsal flexion

strengths were not significantly reduced at all velocities

measured after microgravity, but they were significantly

reduced (~60%) after immersion (Fig. 2). The exercise

(* cycle, t treadmill); IME, isometric exercise.

training during microgravity probably assisted with

maintenance of strength. The only significant differences

in leg muscle strengths between 120 days of bed rest and

110-237 days in microgravity were the significantly lower

values (by 12 and 14%) for bed-rest plantar flexion

strengths at 0 and 60°/s, respectively (Fig. 4). Leg exer-

cise training during flight possibly helped reduce the loss

of strength. From the similarity of these two respective

pairs of curves and those obtained from the two extended

microgravity exposures (Fig. 3), it can be concluded that

there is no greater loss of plantar flexion strength in the

triceps surae (antigravity) muscles compared with the

dorsal flexion (anterior tibial) strength.

CALCIUM LOSS AND BONE MINERAL CONTENT

Ambulation

The effects of exercise training in normal ambulatory

subjects on calcium metabolism and the bone mineral

content (BMC) of various bones have been studied ex-

tensively. Results from cross-sectional studies indicate

that, in general, people who undergo exercise training

have larger and more dense bones than those who do not

exercise (17, 46). The fact that this greater BMC can be
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at least partially accounted for by the strain of exercise
has been reported in longitudinal exercise-training stud-
ies. Training of moderate intensity in women (29-81 yr)
can increase BMC by 1.5-3.5%/yr, and it can also de-
crease by 1.5-3.5%/yr in nonexercising control subjects
(11, 53, 75, 76). There appeared to be a similar rate of
increase in BMC in women (29-62 yr) who ran 42 kin/
wk for 2.5 yr (49). Also, total body calcium content,
measured by neutron activation, increased significantly
in postmenopausal women who exercise trained for 3 h/
wk (2). It is generally agreed that force levels generated
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exposuretomicrogravity.[Redrawn from Grigor'yevaand Kozlovskaya
(42).]
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throughout the skeletal system by daily activity are re-
quired to maintain the bony framework (55, 59) and also
for the integrity of its parts (i.e., bones, muscles, tendons,
and ligaments). From an intensive research effort, Tip-
ton and colleagues (82, 83) have concluded that the
mechanical strain from exercise and muscular contrac-
tions is important for maintaining and repairing liga-
ments and the junctions between ligaments and tendons
and bones.

Thus, in normal ambulatory people, the mechanism
for the maintenance or increase of BMC resulting from
aerobic exercise training involves 1) increased general
body and presumably bone circulation and metabolism,
2) increased pressure on bones during the standing pos-
ture, 3) increased intermittent impact loading on bones
from running or hitting tennis balls (46), and 4) in-
creased mechanical forces on bones from contracting
muscles when maintaining quiet posture and particularly
during exercise. These factors are not mutually exclusive.
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Bed Rest

As with aging, the deconditioning (acclimation) re-
sponses during prolonged bed rest without countermea-
sures include a loss of BMC and total body calcium (19,

30, 74). The average daily calcium losses (urine plus
fecal) in bed-rested subjects whose diets were controlled

were 170 rag/day for 28 days = 62 g/yr (57), 123 rag/day
for 35 days = 45 g/yr (56), 243 mg/day for 35 days = 89
g/yr (91), 236 rag�day for 42-49 days = 86 g/yr (18J, 157
rag/day for 140 days = 57 g/yr (74), and 221 rag/day for
252 days = 81 g/yr (19) (mean 70 g/yr). Seventy grams
of calcium per year (5.8 g/too) represents ~5.8% of the
1,200 g of total body calcium. The mean calcium loss in
10 men bed rested for 100 days was -5 g/too (A. I.
Grigor'yev, unpublished data).

Since >99% of body calcium is in bone, the skeleton
is the obvious source of the calcium loss, but the etiology
of this loss is not clear. Because vigorous exercise train-
ing for 1 h/day during bed rest has no effect on the
increased rate of urinary calcium loss (30, 66), any de-
creased energy metabolism during bed rest does not
appear to be a major contributory factor. Thus the hy-
percalciuria could be the result of 1) the reduction in

hydrostatic pressure within the cardiovascular system
and/or 2) the large reduction in axial pressure and mus-
cle forces that load the axial skeletal and bones of the

lower limbs during ambulation. Various exercise training
regimens that activate thigh and leg muscles, performed
in the supine or sitting positions during bed rest, have
had no effect on reducing the rate of hypercalciuria or
bone density losses (30, 66, 74). On the other hand,
Whedon et al. (91) found that the total urinary calcium
losses in three men during immobilization in plaster casts

in an oscillating bed was only 51% of the losses for the
same period of time during immobilization in a stationary
horizontal bed. So the slight axial loading and probable
cardiovascular stimulation reduced the hypercalciuria.
Therefore, weight bearing, rather than moderate-to-
heavy leg exercise training, appears to be more important
in attenuating the bed-rest-induced hypercalciuria. Quiet
sitting for 8 h/day in conjunction with 16 h/day of bed
rest did not influence urinary calcium output, but 3 h/

day of quiet standing did (45). In the standing position
the forces that load the bones vary as postural muscles
attempt to maintain balance. In addition, during upright
posture there is an accompanying increase in hydrostatic
fluid pressure in the lower limbs. So the latter cannot be
ruled out as a probable contributory factor for the main-
tenance of bone integrity. Blood flow through bones
during bed rest has not been measured, but the hypoxia
of simulated altitude exposure (3,050 and 3,660 m) sig-
nificantly reduces bed-rest-induced urinary calcium and
phosphorus losses (57). All attempts to maintain bone
integrity during bed rest involving dietary and vitamin
supplements, physical exercise, impact loading, static
and intermittent longitudinal compression, and lower
body negative pressure have failed to maintain BMC (70)
possibly because the impact loading and longitudinal
compression treatments have not been applied with suf-
ficient duration and intensity.

However, from measurements of X-ray densitometry

in three subjects, Krasnykh (52) reported that aerobic
treadmill-exercise training (1 h/day for 30 days presum-

ably conducted in the supine position) plus exposure to
lower body negative pressure (LBNP) (2.5 h/day for the

last 5 days of horizontal bed rest) reduced the loss of
calcaneal density from -11.9 _+.0.5% in the control group
to -7.4 _+ 1.5% (P < 0.05) in the exercise-LBNP group.

A third group given daily muscle electrical stimulation
for 60 rain/day showed no significant change in calcaneal
or finger bone density. Kakurin et al. (47) studied tibial
density (X-ray) in men bed rested horizontally for 62

days. They compared density of three men given isomet-
ric and intensive leg cycle ergometer exercise (1,000 kcal/
day) with that of a sedentary bed-rested control group.

Mean bone density of the control group decreased by
15% (range 10-21%), whereas that of the exercise group
decreased by 5% (range 2-7%). Statistical significance
was not possible to calculate. Even with the relatively

large variability in X-ray densitometry, these findings
suggest a positive influence of moderately hard aerobic
exercise training on the loss of BMC during bed rest. On
the other hand, Arnaud et al. (3) found no significant
changes in the mean density of the lumbar spine (L1-L4)
or the middle of the nondominant radius, measured by

dual-photon absorptiometry and single-photon absorp-
tiometry, respectively, in middle-aged men undergoing
strenuous cycle ergometer leg exercise training (7 men,

1 h/day), isokinetic leg exercise training (7 men, 1 h/
day), or no exercise training (5 men) during 30 days of
-6' head-down bed rest (29). Also, results obtained from

iliac crest biopsies, taken during a recent 120-day study
of -5" head-down bed rest on 20 middle-aged men,
indicated no significant changes in bone mass parameters
(trabecular volume, mean cortical thickness, or mean

trabecular plate thickness, density, and separation) in
the nontreatment control group or in other groups sub-
jected to isotonic-isokinetic exercise training, to potas-
sium diphosphonate supplementation, or to exercise plus
supplementation (86). Since only Kakurin et ai. (47)
have reported reduced bone density losses in leg (tibia])

bones accompanying leg exercise training, it is possible
that bone hypertrophy is localized in those bones sub-
jected to direct muscular stress, e.g., humeral hypertro-

phy in the dominant arm of tennis players (46). Most
investigators have treated one body location (i.e., leg

exercise) and measured bone parameters in another (i.e.,
spine or arm). The fact that nutritional supplements
have failed in essentially all trials to attenuate the loss
of BMC during bed rest without and with supplemental
exercise regimens indicates the mechanism is elsewhere,

i.e., not caused by dietary deficiencies. The moderately
suggestive evidence to date points to axial pressure

(standing upright) and physical exercise as the two most
useful countermeasures during bed rest. The problem is
to determine the kind and magnitude of forces acting on
the human skeleton in normal ambulation (mechanical

and orthostatic) and then to devise appropriate counter-
measures for use in microgravity. Since adequate bone
integrity can be maintained in ambulatory people with-
out exercise-training regimens, any effect of exercise
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duringbedrestwould probably act via application of
mechanical stress to the bones.

Microgravity

The few data from cosmonauts after spaceflight
showed no abnormalities in calcaneal amino acid com-

position or inorganic content in three deceased crew-

members after their 28-day flight (65). More recent pho-
ton absorptiometry data from cosmonauts after 75-184
days in flight indicted a decrease of calcaneal mineral
content of 0.9-9.8% in six crewmen that reached a pla-
teau at _90 days of flight (78, 87).

MOOD AND PSYCHOLOGICAL PERFORMANCE

Exercise and exercisetraininginduce "affectivebenef-

icence"on the psychologicalstateof most participants:

those who undertake chronic physical training exhibit

decreases in anxiety and depression as well as increases
in self-esteem(63).Bed-rest confinement and confine-

ment inambulatory subjectscan induce changes in psy-

chologicalstates.Chronic partialconfinement in a nu-

clearsubmarine for 70 days resultedina 7% decrease in
peak VO2 in eight men who did not perform exercise

training,but there was no change in the scoresfrom a

batteryof cognitiveperformance tests(5).

The psychosocialeffectsofexposure to long-duration

bed rest have been reviewed recently by Winget and
DeRoshia (94).The generalconclusion from thisreview

and material in other compendia (36, 39) is that the
combination of semiconfinement and semi-isolationre-

sultsin alteredmood and psychosocialstates.Semicon-

finement indicatesa reduced levelof body movement

and exercise (hypokinesia),so one hypothesis suggests
that the supposed reduction in energy expenditure due

to inactivityduring bed restcontributed to the altered

psychosocial states.Since 2,800-3,100 kcal/day are re-

quired to maintain body weight during bed rest(29,30)

without or with exercise training,respectively,it is
doubtful whether adverse psychosocialresponsesare due

to inactivityunlessthe subjectisseverelyconfinecLHow-

ever, inactivitymay change the metabolic efficiency.

Conversely, hypocaloric intake will aggravate the bed-

rest-inducedhypovolemia, and the ensuing dehydration
could accentuate irritabilityas it does in ambulatory

subjects.
Deitrick et al. (18) studied four men for 42 and 49 days

of bed rest, and relatively complete immobilization was
achieved by Whedon et al. (91) in three men who were
confined within bivalved plaster casts covering the pelvic
girdle and legs for 23 h/day for 35 days during horizontal
bed rest. They concluded that the severity of the adverse
psychosocial responses varied according to each subject's
personality traits; e.g., some subjects reacted to confine-
ment with indications of dependency while others exhib-
ited aggressiveness. The most severe reactions occurred
early in the control period, the first 2 days of bed rest,
and the first 2 days after cast removal, i.e., during pro-
tocol changes. Also, the number and intensityof the

psychosocial reactions were greatly attenuated in the

same subjectsaftera second similarbed-restexperiment

(91). Maslov (58) has characterized the disturbances
during bed rest (increased irritability and fatigue, re-
duced ability to work, inclination to argue, and slight
depression) into four stages: stage 1 (days 1-2), the
starting condition characterized by high spirits and en-
thusiasm; stage 2 {days 3-6), a period of physical discom-
fort; stage 3 (days 10-20), a period of adaptation where
physical discomfort essentially disappears and mental
states are calm and even; and stage 4 (day 20 onward), a

period of occurrence of asthenic symptoms characterized
by restlessness, increasing monotony, and irritability,
shallow sleep, and difficulty in concentrating. It was
concluded that the severity of these signs and symptoms
appeared to be reduced (no data) in the three subjects
performing exercise training (duration and intensity not
specified) during bed rest. The hypervolemia associated
with exercise training may have attenuated the bed-rest-
induced hypovolemia and alleviated some of the dehy-
dration-induced irritability. Subjects who had partici-
pated in bed-rest experiments previously had attenuated
psychosocial reactions (58).

Other investigatorswho measured and observed psy-
chosocialreactionsin bed-rested subjectsalso noted re-

duced adverse signs and symptoms and betterperform-
ance and emotional adjustment in those subjectswho

performed moderate exercise training (8, 72). Results
from a recent30-day,bed-reststudy that employed heavy

and intensivedaily isokineticand isotonic leg exercise

trainingjustbelow the point ofinjuryshowed essentially
no effectof eithermode of training on the modest in-

crease in mood and psychosocial state measured by an

extensive battery of qualitativeand quantitativetests
(28).In thisstudy a concerted effortwas made to ensure

optimal subject selection,to provide them with varied

and interestingactivities,and to fosterpositive leader-

ship attributesin the nursing staffand allinvestigators
and support personnel so that allparticipantswere work-

ing together as one team. Thus, we can conclude that

adverse mood and psychosocialresponses are not neces-

sarilyan inherent part of the bed-rest deconditioning

syndrome, that there isan increasinglypositivepsycho-
logicalstatewith each succeeding bed-rest experiment,

and that intensive exercise training during bed rest can,
but does not always, engender better mental states. How-
ever, exercise training may improve mood and mental
performance in subjects exposed to a less than optimal
psychosocial environment during bed rest.

In summary, in successful bed-rest experiments where
subjects receive positive psychological reinforcement and
subjects and staff work as a team, it seems there are no
adverse consequences from physical exercise training on
orthostatic tolerance, muscular strength and endurance,
bone integrity, and mood and psychosocial performance.
Increased physical fitness improves all these functions
with the exception of orthostatic tolerance, which re-
mains unchanged. The one potentially adverse effect is
excessive exercise hyperthermia during exposure to mi-
crogravity.

DISCUSSION OF EXERCISE PRESCRIPTIONS

Our basichypothesis isthat itisunnecessary tomain-

rain in astronauts,who before flighthave above-average
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TABLE 4. Exercise prescriptions [or intermediate-duration exposures (15-180 days) to microgravity

Pilots Payload Mission
Specialists Specialists (EVA)

Kind Isotonic (legs) Isotonic (legs} Isotonic (legs)
Isokinetic (legs) Isokinetic (arms and legs) Isokinetic {arms)

Device Cycle ergometer Cycle ergometer Cycle ergometer
Isokinetic ergometer Isokinetic ergometer Isokinetic ergometer

Intensity Isotonic (70-100%) Isotonic (70-100%) Isotonic (70-100%)
Isokinetic MVC* Isokinetic MVC Isokinetic MVC

Duration Isotonic (20-30 rain/day) Isotonic (30 rain/day) Isotonic (30 rain/day)
Isokinetic (10 sets/5 reps Isokinetic (10 sets/5 reps Isokinetic (10 sets/5 reps

MVC/day) MVC/day) MVC/day)

* MVC, maximal voluntary contraction.

r_NO EXERCISE - 4](N
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FIG. 5. Mean percent change in peak oxygen uptake during 30 days

of -6 ° head-down bed rest with isotonic (cycle) and i_kinetic exercise
training. [From Greenleaf et al. (29).]

levels of physical fitness, all physiological systems at the
eugravitational level during prolonged exposure to mi-
crogravity, especially the physical working capacity. This
hypothesis assumes that the astronauts would be rela-
tively well trained when they reached microgravity. The
next generation of operational EVA suits is constructed
to alleviate most if not all internal resistance to limb

movement, particularly in the arms, forearms, and hands,
but there may be occasions when great maximal isometric
muscular strength is needed. Moderate levels of strength
and muscular endurance will be necessary for EVA, and
the thermal removal rates of the life support system will
limit individual EVA to <8 h. Astronauts with high peak
_7o2 can work at greater loads, and intense exercise
training in microgravity may result in excess exercise
hyperthermia; the combined result could be greater heat
produced for removal by the life support system and
reduced EVA time. Thus, very high levels of physical
fitness will probably not be necessary for microgravita-
tional work in and about the Space Station and may, in

some situations, be a liability.
On the other hand, to be prepared for emergency

situations requiring high-intensity and/or long-duration
exercise, a prudent and reasonable policy would be for
astronauts to maintain a high level of physical fitness,

and work rate should be monitored to minimize possible
reduced working time during EVA. Also, the emergency
egress procedures from the Space Shuttle during or after
landing on Earth would require high levels of strength
and possibly endurance if injured crewmembers need
assistance from healthy crewmembers. There is no rea-
son to maintain excessively high fitness levels in all
astronauts during prolonged periods on the Space Sta-
tion if their work situations do not require it. Perhaps
fitness levels can be increased by a more intensive train-
ing program a few weeks before returning to Earth in
anticipation of landing exigencies.

Prescriptions

Ground based. It is probably inappropriate to recom-
mend specific exercise-training regimens for astronauts
to use on the ground to attain and maintain an appro-
priate level of physical fitness; Frey (22) has presented
some potential problems, e.g., reduced orthostatic toler-
ance of some endurance-trained athletes. A recom-
mended maximal or peak level of "v'o2 would be 50 ml.

min -1. kg body wt -1 to be maintained by whatever exer-
cise protocols would be acceptable to each crewmember
{e.g., cycling, running, swimming). Recommended mean
strength peak torque levels for shoulder abduction/ad-
duction and knee flexion/extension would be 60 and 150
N-m, respectively. Both could be maintained by self-
selected exercise regimens. Exercise-training adherence
is difficult enough even when a variety of exercise and
sport regimens is employed. A rigid prescription of spec-
ified exercise would probably be counterproductive, but
a minimal level of strength and endurance to be main-
tained by all astronauts would not be an unreasonable
requirement.

In flight. Unfortunately, crewmembers in flight will
not have access to the variety of exercise equipment and
regimens that are available on Earth. Since productive
working time in microgravity is at a premium, it is
paramount to design efficient exercise prescriptions. One
proposed prescription is presented in Table 4. This is an
amalgamation of protocols from the authors and the
other committee members listed in the acknowledg-
ments. It was designed partly from results of the 1986
30-day bed-rest study conducted at Ames Research Cen-
ter and partly from the committee members' own expe-
rience. The purpose of this prescription was to maintain
only ground-based aerobic capacity (peak 402), strength,
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and endurance during flight. Our prescription is based

on use of the cycle (isotonic) and isokinetic modes of

exercise, because muscle soreness and fiber damage may

occur more readily with eccentric muscular contractions

from forced lengthening that occurs with running (15,

24). After prolonged running, muscle glycogen restora-

tion may take >7 days with excess carbohydrate feeding;

glycogen resynthesis is proportional to dietary carbohy-

drate content after prolonged cycling when the chance

for muscle damage from concentric contractions is slight

(16). The total time for performing this exercise protocol

is ~40 rain/day. Note (Table 4) that all crewmembers

would perform isokinetic leg exercise; payload specialist

both arm and leg isokinetic work; and mission specialists,

who undertake EVA, mainly arm isokinetic exercise. If

EVA is performed frequently, additional exercise train-

ing for these crewmembers may not be necessary. Pilots

may need to perform isotonic leg exercise for only 20

rain/day. Obviously any in-flight exercise-training pro-

tocol would be modified to fit the situation. For example,

if pilots need to perform EVA, their training protocol
would be modified accordingly.

If exercise time becomes critical, an alternative pro-

tocol would require <30 rain/day. If it could be estab-

lished that preflight aerobic capacity could be allowed to

decrease by ~10% during flight, then performance of

only isokinetic leg training [10 sets of 5 maximal volun-
tary contractions of the thigh muscles (flexion and ex-

tension at each knee at a velocity of 100°/s)] once each

day for 6 days/wk would probably maintain aerobic ca-

pacity, strength, and endurance within 10% of their

respective preflight levels {Fig. 5). This is an argument

for increasing and maintaining strength and aerobic ca-

pacity by 10-15% before flight, so a 10% reduction during

flight could be tolerated without significant adverse ef-

fects. Dudley and Djamil (20) have concluded that con-

current isokinetic strength and endurance training does

not influence the increase in aerobic power resulting

from isotonic endurance training alone. A recommended

prescription, exercise or otherwise, for total or partial

prevention of in-flight calcium (bone) loss cannot be

proposed until further research has determined the site

and magnitude of bone losses during eugravity and mi-

crogravity deconditioning.

We recognize that such proposed in-flight exercise-

training regimens can become boring, and they should

be supplemented with varied recreational exercise when-

ever possible (44). Appropriate preflight indoctrination

regarding the purposes, benefits, and varieties of exercise

would be helpful in this regard.

We thank Victor A. Convertino, Reggie V. Edgerton, William T.
Stauber, and Charles M. Tipton, who kindly contributed material for

the formulation of the exercise prescriptions, and Robert Whalan and
G. Donald Whedon for constructive comments on the manuscript.
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ORTHOSTATIC TOLERANCE

Orthostatic Responses Following 30-Day
Bed Rest Deconditioning With Isotonic and

• Isokinetic Exercise Training

J. E. GREENLEAF, Ph.D., C. E. WADE,'Ph.D., and
G. LEFTHERIOTIS, M.D.

GIUEENLEAFJE, W,_£ CE, LEFTH£mOT[SG. Orthostatic re-
sponses following 30-day bed rest deconditioning with isotonic and
isokinetic exercise training. Aviat. Space Environ. Mad. 1989;
60:537-42.

Todetermine if intensive isotonic or isokinetic exercise train-
ing during 30 d of -6" head-down bed rest (BR)would accentuate
orthestatic intolerance, 19 men (32-42 years) were divided into
a no-exorcisecontrol group (N = S), and isotonic (Quinton er-
gomater, N = 7) and isokinetic (Udo ergomater, N = 7) exercise
groups. Training was two _nnin periods per day for $ days per
week. Changes (* = p < 0.0S) in peak YO2 uptake (Umin) from
control day 2 to BR day 29 ware: isotonic +1.4%, isokinetic
-10.2%*, no exercise -20.1%*. Changesin resting plasma vel-
ume (ml) from control day I to BRday 30 were: isotonic -3.7_,
isokinettc -18.0_*, and no exercise -17.2%% A 60_ head-up
tilt test was administoroclon control day 1 and BRday 30; the
test was terminated at 60 rain or when prasyncopal signs and/or
symptomsoccurred. Changes in X tilt tolerance were: isaton/c,
42 to 34 rnin (A = --8 rain*); isokinetic, 53 to 30 rain (A -- -23
rain*); and no exercise, 46 to 30 rain (A = --16 rain*). Mean day
30 group tolerances were all significantly lower than day ! tol-
erancos,but the reductionswere not different between groul_.
Becausethere was no obvious raiationship between _ of ax-
attica, exorcise energy expenditure, change in pegk VOs, or
changein resting plasnmvolume and the consistentreduction in
pest4R tilt toiorancos, it appears that the orthostatic intalar-
ance was due mainly to the reduction in body hydrostatic pros-
sure from the -6* _n body position, and was not related
to the level of physical fitness. Thus,factors other than training
status are probQbly invoivlcl.

RTHOSTATIC INTOLERANCE (a tendency to
faint) is a common response of essentially all astro-

nauts when they attempt to stand immediately after
landing in the Space Shuttle. The countermeasures used
most widely by astronauts have been physical exercise
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training, pre-recntry fluid loading, and G-suit inflation.

However, the effect of physical training and the level of
peak oxygen uptake on orthostasis has remained con-
troversial, mainly because of the faulty logic and inap-
propriate experimental designs of previous research
studies. Conclusions that exercise training causes lower
tolerances come mainly from four cross-sectional stud-
ies where responses were compared in trained and un-
rxained subjects (I). Results from four other studies
(2,4,6,12), in which orthostatic tolerance was actually
measured before and after a period of exercise training,
indicated a significant increase in tilt tolerance in 4 men

after 12 d of Lraining (4), and no change in tolerance in
I3 men and6 women after 8-12 d of training (2,4,.12). In
the fourth study, in spite of an increase in peak VO2 of
18--22%, there was no significant change in tilt tolerance
in 5 previously untrained men after 6 months of intense,
general physical training (6). Thus, factors other than
training status are probably involved.

To address the practical problem of the effects of
exercise training on tilt tolerance following decondition-

ing of astronauts, we studied orthostadc responses of 19
men who underwent two intensive exercise-training reg-
imens during 30 d of bedrest. We found no significant
change in tilt tolerance with exercise training.

PROCEDURES AND METHODS

Informed consent was obtained from 19 men (Table I)

selected to match the average age (37 years) and ap-
proximate peak "v'02 (44 ml • rain- 1. kg- i) of the active

astronaut corps. They passed a thorough medical exam-
ination which included a medical history, physical ex-
amination, and comprehensive biochemical and physi-
ologic tests.

The subjects were housed in the Human Research
Facility at Ames Research Center for 42 d: 7 d of am-
bulatory control, followed by 30 d of -6 ° head-down
bed rest, and then 4.5 d of ambulatory recovery. They
were divided selectively into three groups: a no-
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TABLE I. BASELINE AND BED REST DATA FOR THE THREE GROUPS.

Baseline Bed Rest

Body Weight
Caloric

Age Ht Wt S.A. Fat intake Day I Day 30 A
(years) (cm) (kg) (m:) (%) (kcal/d) (kg) (kg) (kg)

No exercise
36 177 74.6 1.91 15.5 2678 75.82 74.82 - 1.01

--S.E. 2 2 5.3 0.06 2.4 75 4.79 4.14 0.81

Isotonic exercise
36 178 80.2 1.98 19.9 2833 79.60 78.74 - 0.85

"*'S.E. 1 3 1.5 0.04 2.2 82 1.71 1.69 0.59

Isokinetic exercise
36 177 74.3 1.91 ! 1.0 2890 73.41 73.41 0.00

:S.E. 2 3 2.4 0.05 2.0 75 2.43 2.59 0.52

exercise training control (N : 5) group, an isotonic
exercise training (N : 7) group, and an isokinetic ex-
ercise training (N -- 7) group (Table I). Twelve subjects
(Group 1:4 no exercise, 4 isotonic, 4 isokinetic) were
tested from July l-Aug. 1I, 1986, and 7 subjects (Group
2:1 no exercise, 3 isotonic, 3 isokinetic) were tested
from Aug. 19--Sept. 29, 1986.

Diet and clinical procedures: There were 17 different
daily menus composed of fresh and frozen foods that
were rotated over the 42 d. The prescribed daily caloric
intake was 2,800 kcal for the no-exercise group and
3,100 kcal for the two exercise groups. Because of the
difficulty in planning meals to allow for exercise peri-
ods, lack of appetite due to gastrointestinal distur-
bances, aversion to some foods, etc., all prescribed
food was not eaten. The actual measured intakes were
2,678 --- 75 to 2,890 - 75 kcal/d (Table D. Percentages
by weight of protein, carbohydrate, and fat were
20--21%, 62-63%, and 18%, respectively. Daily electro-
lyte contents were 5.4--5.6 g Na, 4.8--4.9 g K, 1.3 g Ca,
and 1.8-1.9 g P. Water and other fluids were consumed
ad libitum. Body weight was measured daily and aver-
age group losses during bed rest ranged from 0.00-1.01
kg (Table D. Body fat was calculated from body density
measured by underwater weighing.

The subjects were supervised and monitored 24 h/d
and room lighting was on between 0700 and 2300 hours
daily. All testing, showering, urination, and defecation
functions were done in the horizontal or head-down po-
sitions. They were allowed to have one pillow, and to
rise on one elbow to eat. We have no evidence that any
subject assumed a sitting or standing position during
bed rest. Only 3 subjects (1 isotonic, 2 isokinetic) were
unable to perform all required exercise training due to
muscle strains and gastrointestinal distress; they lost
only seven 30-rain sessions. Findings from the perfor-
mance-mood tests suggested some fatigue and perhaps
mild "overtraining" in the isotonic group.

Exercise testing and training: Pre-bed rest peak VO 2
uptake was measured by using standard procedures (3)
on calibrated Quinton cycle ergometers (model 845)
with the subjects in the horizontal position. The contin-
uous exercise test utilized progressively increasing
loads (200 kg-rn/min) at 60 rpm until a pedaling fre-
quency of 50 rpm could not be maintained. The
peak VO2 was the mean of the final four 15-s values.

Peak _:O2 measured during bed rest uriliTed a work
intensity of 40% followed by a load about 400 kg-m/min
below peak load for 2 rain, men with loads increasing by
200 kg-m/min each 2 rain until the subject could not
maintain 50 rpm. All three groups were tested weekly
during bedrest for peak. VO2 on the cycle ergometer. All
subjects had 5-6 peak VO2 tests prior to the ambulatory
control period, so they were well-aeqnainted and com-
fortable with the testing procedures.

Daily isotonic leg exercise training during bed rest
was performed in the supine position for 30-rain periods
in the morning and afternoon 5 d/week. Subjects
warmed up for 7 rain at a load equivalent to 40% of peak
702, which was followed by 2 rain of exercise at 60, 70,
80, 90, and 80% with each level separated by 2 rain at
the 40% load. Once the absolute exercise training loads
were established in the ambulatory control period, they
were used throughout the study.

Daily isokinetic leg exercise training during bed rest
was also performed in the supine position for 30-rain
periods in the morning and afternoon 5 d/week on a
Lido Isokinetic Rehabilitation ergometer. Following a
5-rain warm-up period, the subjects performed 5 peak
knee flexions and extensions (90" arc) in 10 s at a speed
of 100*/s and rested for the remaining 50 s. This routine
was repeated 10 times and, after a 4-rain cooling-down
period, it was repeated with the other leg.

Tilt-table tests and plasma volume: Orthostatic test-
ing was performed on ambulatory control day 1 and
bedrest day 30 on a motorized Laberne Physical Ther-
apy Treatment table. The protocol consisted of 45 rain
in the supine position pre-bedrest (control), and in the
-6 ° head-down supine position post-bedrest; the sub-

jects were tilted to 60* within 10-I5 s, remaining in that
position for 60 rain or until the onset of presyncopal
signs and symptoms (e.g., nausea, dizziness, sweating,
lightheadedness, and tunnel vision), and had at least a
10-rnin recovery period in the -6* head-down position.

An antecubital vein was catheterized with a 3-cm ny-
lon needle (Quick-Cath, Travenol Lab) 45 rain before
tilt. The catheter was flushed with Na-heparin and the
arm was supported comfortably in a neutral, horizontal
position during the 45-rain pre-tilt period and for 5 rain
following tilt. Plasma volume was measured between
- 15and - 5rainof thecontrolperiod with thestandard
Evans blue dye-dilutiontechniquefrom one lO-min
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post-injection blood sample (5). The catheter was

cleared by withdrawing 3 ml of blood; then 28 rnl of

blood were withdrawn--8 rrd for the Evans-blue control

and 20 ml for other analyses. A weighed syringe con-

tained approximately 5 ml of dye; the dye was injected,

and the line was flushed with 5 ml of isotonic saline and

2 ml of Na-heparin. The empty dye syringe was weighed

again and the weight of dye injected calculated. Then

the subjects were tilted. They stood on a pillow placed

on a 7-cm foam cushion which was placed on the foot-

board. A 15-cm wide canvas belt was secured firmly

across the superior lilac crest. About 65% of the sub-

ject's weight (measured with a scale) was supported on

the footboard. The subject was instructed to remain re-

laxed during tilting with no conversation except to an-

swer occasional queries regarding his status. Heart rate

(Hewlett-Packard cardiotachometer) and manual sphyg-

momanometric blood pressures were taken periodically

during the control and tilting periods. After the 5-min

blood sample (20 ml) during tilt, the arm support was

removed and the arm was lowered to the normal, re-

laxed position. The catheter was removed in the recov-

ery period. Total blood volume withdrawn was 65 ml

and about 50 ml of saline and Na-heparin were injected.

Quadruplicate microbematocrits were spun at 11,500

rpm for 10 rain and read on a modified International

microcapillary reader (model CR). Raw Hct values were

ET AL.

corrected for trapped plasma and whole-body Hct by

multiplication with the factors 0.96 and 0.91, respec-

tively. Blood volume (BV) was BV = PV{100/[100 -

(Hct x 0.96 x 0.91)]} and red cell volume (RCV) was

BV-PV.

The data were analyzed with linear regression, anal-

ysis of variance, and the t test. The null hypothesis was

rejected when p < 0.05. Nonsignificant differences were

indicated by NS. Variability was expressed as -*'S.E.

RESULTS

Tilt tolerance: There was wide variability pre-bed rest

control (day 1) and post-bed rest (day 30) tilt tolerances

(Table II). Thirteen subjects reached the arbitrary 60-

rain tolerance during the control test, but only 7 subjects

reached 60 rain after bed rest. Further, those 7 subjects

(2 no exercise, 3 isotonic, 2 isokinetic) tolerated 60 rain

in both the control and post-bed rest tests (Table LI).

Mean ("-S.E.) tilt-tolerances for all three groups ana-

lyzed collectively (N = 19) were 47 - 5 rain in control

and were reduced to 32 --- 5 rain (p < 0.05) after bed rest

on day 30 (Fig. 1, Table ID. There were no significant

differences between the groups' ambulatory tolerances

(46, 42, and 53 rain) or between their tolerances after

bed rest (30, 34, and 30 rain).

Heart rate and blood pressure: Mean (-*-S.E.) heart

TABLE lI. INDIVIDUAL TILT TOLERANCES AND HEART RATE AND BLOOD PRESSURE DATA AT REST AND AT
TOLERANCE ON CONTROL (DAY 1) AND BED REST (DAY 30).

Tilt Tolerance

Day 1 Day 30 A
Subject (rain) (rain) (rain)

Heart Rate, Day I Heart Rate, Day 30 Blood Pressure, Day 1 Blood Pressure, Day 30

Contr Tol A Contr Tol A Contr To[ £ Contr Tol A

(b/rain) (b/rain) Co/rain) (b/rain) (b/rain) (b/rain) (mmHg) (ram Hg) (ram Hg) (ram H$) (ram H_) (ram H S)

ALF 26 8 18
BEL 60 7 53
MUM 60 60 0
SCH 25 16 9
STE 60 60 0
X 46 30 16
±S.E. 8 12 10

MIN I 3 2
MON 60 60 0
RAN 60 12 -48
SCO 60 6O 0
AYA 39 37 - 2
GRE !1 9 -2
RAW 6O 6O 0
X 42 34 - 7
"S.E. 10 10 7

No exercise (N-5)
64 95 31 82 127 45 127/89 120/92 -7/3 120/100 130/I I0 10/10
59 64 5 83 116 33 123/77 124/98 1/21 127/84 150/I 10 23/26
65 88 23 80 132 52 110/70 110/78 0/8 113/70 130/100 17/30
59 60 1 59 75 16 135/88 128/80 -7/-8 121/81 120/98 - 1/17
60 80 20 62 120 58 117/81 130/100 13119 123/84 118/100 - 5116
61 77 16 73 114 41 122/81 122/90 0/9 121/84 130/104 9/20

1 7 6 5 10 8 4/4 4/5 4/5 2/5 6/3 514

Isotonic exercise (N = 7)
66 66 0 74 110 36 128/79 128/80 0/1 132/86 140/I 10 8/24
59 90 31 67 156 89 135/94 130/102 -5/9 130/87 110/100 -20/13
58 81 23 59 89 30 119/77 110/92 -9115 110/75 110/94 0/19
67 83 16 80 119 39 121/79 !14/84 -7/5 121/79 120/100 -1/21
60 78 18 65 86 21 129/98 128/102 - 1/4 125/90 120/100 -5/10
52 70 18 50 120 70 120/79 132/96 12/17 119/77 130,'98 11/21
65 80 17 70 102 32 121/79 120/88 - 1/9 129/79 124/100 -5/21
61 75 18 66 112 45 125/84 123/92 -2/8 124/82 122/100 -2/18
2 4 4 4 9 9 2/3 3/3 3/2 3/2 4/2 4/2

Isokinetic exercise fN : 7)
DOR 60 29 -31 40 60 20 59 136 77 131/73 128/80 -3/7 134179 110/90 -24/11
KAM 60 60 0 56 77 21 63 130 67 121/87 120/102 - 1/15 120/78 120/106 0/28
NEL 60 8 -52 52 82 30 61 58 -3 123/73 120/96 -3/23 123/78 120/90 -3/12
NOR 60 30 -30 62 88 26 68 !12 44 123180 116/88 -7/8 121/73 90/60 -31/-13
GOL 60 19 -41 59 64 5 60 100 40 130/82 110/90 - 20/8 123/79 120/90 - 3/11
MCC 11 4 - 7 56 75 19 59 80 21 127/97 ! 18/98 - 9/I 123/94 134/98 11/4
STO 60 60 0 47 58 I 1 52 125 73 108/70 120/90 12/20 110/74 98/90 - 12/16

53 30 -23 53 72 19 60 106 46 123/80 119/92 -4/12 122/79 113189 -9/10
""S.E. 7 9 8 3 4 3 2 II II 314 2/3 4/3 3/3 6/5 6/5

ALl groups (N = 19)
47 32 - 15 58 74 18 66 110 44 124/82 121/91 -2/10 122/81 121/97 -2/16

=S.E. 5 5 5 2 3 2 2 6 5 2/2 _ 212 2/2 3/3 3/2
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of bed rest (Bit-30) in the three groups. *p < 0.0S from C-I.
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Fig. 3. Mean (_:S.L) systolic and diastolic blood pressures dur-

ing the supine control and 60* head-up tilt periods before (C-I)
and at the end of the bed rest (BR-.IO) in the three groups.

rates and blood pressures during the supine control and
tilt periods are presented in Fig. 2 and 3, respectively.
Because individual tolerances were different, the num-
ber of subjects included in each mean value decreased
progressively as time of tilt len_:hened. Mean heart
rates in the supine control period (X of -25, -20, - 15
mini for N = 19 were 58 -- 2 beats/±in on day 1 and
they increased to 66 ± 2 beats/±in (p < 0.05) on bed rest
day 30 (Fig. 2, Table II). Mean heart rates for all three
groups in the first minute of tilt at day 30 were all higher
(p < 0.05) than their respective rates on clay 1 (Fig. 2).
These elevated heart rates continued throughout the tilt

period. Mean increases in heart rate (N = 19) from rest
to tolerance on day I were 58 to 74 beats/min (p < 0.05),
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Fig. 2. Mean (+S.[.) heart ms during the supine control end

60* itead-up tilt winds bet_re (C-!) and at the end of bed rest

(ER-30) in the three groups.

and 66 to 110 beatsdmin (p < 0.05) on day 30 (Table LD.
The two exercise-training regimens had no significant
effect on the resting-to-tolerance heart rates: the mean
changes on day I were 16, 18, and 19 beats/min, and
those on day 30 were 41, 45, and 46 beats/±in, respec-
tively (Table II).

In general, systolic blood pressures were relatively
constant during the supine control period and during
tilting before (day 1) and after (day 30) bed rest (Fig. 2,
Table LD. Mean changes (N = 19) from supine control
to tolerance on day 1 were 124 ± 2 to 121 -- 2 mm Hg
(NS), respectively, and 122 +'- 2 to 121 - 3 ram Hg (NS)
on day 30, respectively (Table LD. On the other hand,
the diastolic pressure rose significantly at tolerance.
Mean (±S.E.) changes (N = 19) from supine control to
tolerance on day 1 were 82 - 2 to 91 ± 2 mm Hg (p <
0.05), and 81 ± 2 to 97 _ 3 mm Hg (p < 0.05) on day 30
(Table ll).

Fluid volumes: Resting plasma volume (PV) de-
creased during bed rest in the isokinetic and no-exercise
groups, but was unchanged in the isotonic group. In the
isokinetic group, plasma volume decreased from 3665 ±
167 ml on ambulatory control day I to 3120 ± 55 ml
( - 14.2%, p < 0.05") and to 2988 ± 109 ml ( - 18.0%, p <
0.05) on bed rest-days 8 and 30, respectively (Fig. 4).
Similarly, in the no=exercise group, plasma volume de-
creased from 3401 ± 198 on day 1 to 3017 ± 140 ml
(- I 1.0%, p < 0.05) and to 2810 ± 165 ml (- 17.2%, p <
0.05) on bed rest days 8 and 30, respectively. Corre-
sponding unchanged PVs in the isotonic group were
3255 ± 190 ml (day I), and 3116 ± 142 rni (-3.8%, NS)
and 3111 m 123 ml (-3.7%, NS) on bed rest days 8 and
30, respectively (Fig. 4).

Red cell and total blood volumes followed plasma
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volumes; there were no significant changes in the iso-
ton/c group but significant decreases in the isokinetic
and no-exercise groups during bed rest (Table IID.

Aerobic power: Peak oxygen uptake was mainra/ned
at ambulatory control levels during bed rest in the iso-
tonic exercise training group (Fig. 5): it was 3.13 ± 0.29
L/rain (38.9 rni. rain -t. kg -t) on control day 2 and
3.14 ± 0.23 L/rain (40.0 ml ; mLn-1, kg-t) on bed rest
day 29 (A = + 1..4%, NS). The magnitude of the de-
creases in peak VO 2 in the isokinetic and no-exercise
groups in the same time period was: 3.24 - 0.17 (44.1
ml.min -l.k -1) to 2.90 ± 0.16 L/rain (40.0
ml • rain- 1. kg" (A = -- 10.2%, p < 0.05) and 3.27 ±
0.31 (43.6 ml • rain- t. kg- 1) to 2.60 ± 0.26 L/rain (35.7
ml-rain -1. kg -t) (A = --20.1%, p < 0.05), respec-
tively. The average energy expenditures for each 30-min
isokinetic and isotonic exercise regimen were 8.9 ± 0.5
and 18.8 ± 1.6 ml • rain-t, kg-1, respectively.

Intercorrelations: C.orrelat/on coefficients were cal-
culated with peak VO2, tilt-tolerance, and resting
plasma volume data before and at the end of bed rest.
There was a significant (p < O.OOl) correlation of
0.85 between peak V02 on ambulatory control day 2
and on bed rest day 29. There was a lower but sign/fi-

O NO EXERCISE (N -4)

• ISOTONIC EXERCISE [N - 7]

" I • ISOKINETIC EXERCISE (N- 7)

"_ / " ,<0.0SFROMC-2

AMBULATORY |
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PRE 1 3 5 7 2 4 6 8 10 12 14 16 18 2O _1_24 28 28 30
DAYS

Fig. S. Mean (=I.E.) peak oxygen uptakes during the procon-
trol and control (C-2) periods, and weekly during bed rest in the
three groups. *p < O.OS from C-2.

cant (p < 0.02) correlation of 0.54 between tolerance
time on control day 1 and bed rest day 30. However,
there were no significant correlations between peak
VO2, tolerance time, and plasma volume for the sepa-
rate groups or for the combined group (N = 19), sug-
gesting that these three factors are largely independent.

DISCUSSION

The results show cle,ariy that the range in peak oxy-
gen uptake of + 1.4% to -20.1% in the three groups
during 30 d of -6 ° head-down bed rest deconditioning
had no significant effect on the magnitude of the usual
decrease in 60° head-up tilt tolerance following pro-
longed bed rest. Further, resting plasma volume was
unchanged in the isotonic group while it decreased sig-
nificantly in the other two groups, which suggests that
the magnitude of resting hypovolemia is not a major
factor determining orthostatic intolerance following
prolonged bed rest.

Another factor that might have explained our results
is energy expenditure. It must not be assumed, because
the no=exercise control group had no formal, daily ex-

TABLE HI. MEAN (±S.E.) CALCULATED RED-CELL AND TOTAL BLOOD VOLUMES
DURING THE AMBULATORY CONTROL (C-I) AND BED REST (BR-8, BR-30) PEJ_ODS.

Red Cell Volume Total Blood Volume

Day 1 Day 8 Day 30 Day 1 Day 8 Day 30

(ml) (ml/kg) (ml) (mJ/kg) (mJ) (ml/kg)(mJ) (ml/k_ (ml) (ml/kg) (el) (ml/kg)

No exercise

2031 27 1941 26 1764" 24" 5433 71 4958 66 4573" 62 °
""S.E. 107 1 102 2 73 I 287 4 216 3 213 4

Isotonic exercise
2064 26 1959 25 1892 24 5319 66 5075 64 5003 64

"-S.E. 174 2 136 2 109 2 362 4 274 4 2."9 3

Isokinetic exercise

2144 29 1961" 27" 1740" 24* 5809 79 5081 ° 70* 4729" 65"
•'-S.E. 78 2 81 2 69 I 193 3 106 3 146 2

* p < 0.05 from comparable Day 1 value.

Aviation, Space, and Environmental Medicine • June. 1989 71



ORTHOSTASIS AFTER BED REST---GREENLEAF ET AL.

ercise training, that they had low energy expenditure.
Their mean (±S.E.) daily caloric intake was 2,678 - 75
kcaYd, and during bed rest they lost 1.01 = 0.81 kg with
no change in body fat content (3). Thus, their daily ca-
loric utilization was essentially that of a moderately sed-
entary ambulatory man. The two exercise groups
worked to the point where any further increase in in-
tensity and/or duration would have probably caused se-
rious injury; only seven 30-rain exercise training bouts
in 3 subjects (1 isotonic, 2 isokinetic) were lost due to
muscle strain (3). Thus, the near-maximal isotonic and
isokinetic training regimens with their attendant in-
creases in energy utilization did not influence or ame-
liorate the orthostatic responses; i.e., heart rates, blood
pressures, or truncated tolerances. This means that fac-
tors associated with or caused by exercise training in-
tensity have essentially no influence on the decrease in
tilt tolerance.

The remaining major stressor is reduction of hydro-
static pressure within the body and the cardiovascular
system in particular. Insufficient data were collected to
investigate this hypothesis. But Sheldahl et al. (1 I) have
found that the headward shift of blood into the thorax
during training in water immersion does not alter the
normal adaptive responses (mainly cardiovascular) to
aerobic exercise training in normal ambulatory subjects.

Direct evidence is accumulating which supports the
conclusion that exercise training per se does not cause
a reduction in tilt tolerance. Harrison (9) has reviewed
the literature thoroughly and concluded that "... the
presently available information is both qualitatively and
quantitatively inadequate to permit any definite state-
ment rega.r,ding a possible relationship between aerobic
power (VO2=_) and orthostatic tolerance." The
supposition that the level of physical fitness, a complex
physiological adaptation, can be measured adequately
by only one variablewthe maximal oxygen uptakewis
part of the problem. After a thorough review of the
literature, Convenino (1) also concluded there is no as-
sociation between aerobic fitness and orthostatic toler-
ance. Results from a recent 4-month training study of 85
men also indicated no relationship between estimated
aerobic capacity and heart rate and blood pressure
changes during head-up tilt after training (I0).

Findings from the four previous studies, where tilt
tolerances were measured directly before and after ex-
ercise training periods, indicated either an increase in
tolerance (4) or no change in tolerance (2,4,6,12). Re-
sults from the present study add a new dimension to the
finding that training does not affect tilt tolerance in that
the training was undertaken by bed rested subjects.

No valid conclusions can or should be drawn at this
time from results of cross-sectional studies involving a
comparison of the levels of intolerance between various
groups of trained and untrained subjects. Merely be-
cause a particular group of endurance-trained men ex-
hibit significantly lower tilt-tolerance than a comparable

group of untrained men does not mean that the lower
tolerance was due to the exercise training per se unless
all other pertinent factors had been controlled. That the
blood pressure control system is altered in the direction
of greater lability and lower resting pressures following
some exercise training programs seems well-
documented (7). There is sufficient evidence to con-
clude that some high-endurance subjects have more la-
bile blood pressure control systems; however, many
more subjects must be tested before firm conclusions
can be drawn. To extrapolate from these findings to the
conclusion that their lower tilt-tolerances were caused
or resulted from their exercise training is unwarranted.
It would be prudent to thoroughly test astronaut candi-
dates who have been highly endurance-trained to deter-
mine if they exhibit unusual orthostatic intolerance.
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POSTURE, EQUILIBRIUM, AND GAIT

Balance and Gait

M. M. Cohen

The ability of astronauts to locomote upon landing after

orbital missions is frequently compromised by impair-

ment of postural equilibrium, balance, and gait. It has
been assumed that these deficits result from reinter-

pretation of otolith organ inputs during exposure to

microgravity, although there are several other possibili-

ties. For example, the deficits could be due to weakened

leg muscles resulting from muscle atrophy, to reduced

blood flow to the brain from deconditioning, or to

altered neuromuscular control resulting from lack of

motor activity of the postural muscles. Some of these

hypotheses have been studied in bed-rested subjects

where the vestibular system remains functional, although

potential effects of muscle atrophy, altered brain blood

flow, and degraded neuromuscular control may occur.

Results of these two types of exercise training regimens

utilizing independent measures of aerobic work capacity,

via changes in peak oxygen uptake (indicators of cardio-

vascular and metabolic changes), and changes in muscle

strength and size (partial indicators of muscle atrophy),

were used in evaluate their efficacy in preventing the

atrophic and other deconditioning effects of bed rest.

The purpose of this study was (a) to examine the

influence of the two types of exercise in preventing or

ameliorating changes in posture, equilibrium, and gait

(PEG) after bed rest deconditioning, and Co) to test the

hypothesis that factors other than reinterpretation of

inputs to the otolith organs influence post-bed rest
changes in PEG, since these inputs are probably not

altered during bed rest as they may be during exposure

to microgravity.

Methods

These PEG tests were conducted on ambulatory control

days -7 and -2 and recovery days 1 and 4. The tilt-table

test was performed on the last day of bed rest (BR 30),

one day prior to PEG testing on the first and fourth day of

recovery. Upon arising on R + I, the subjects were

allowed to assume the upright position over a 2-hr period
before the PEG tests were conducted. In four separate

20-rain sessions, each subject was tested for his ability to

maintain posture and equilibrium, and to walk a specified
course.

Posture and equilibrium tests- Each subject was

required to stand with his arms folded over his chest on a

force platform (stabilometer) to measure body sway. An

ABCDE/EDCBA design was used. Conditions were as
follows:

A B C D E

Eyes open closed open closed open

Target fixed fixed fixed fixed moved
Platform fixed fixed moved moved fixed

Gait test- Immediately following the initial tests on the

stabilometer, each subject was required to walk a
standardized course to measure locomotive ability and

gait. Eletromyogram (EMG) signals from the anterior

tibialis and gastrocnemius-soleus muscles, and signals
from foot switches indicated contact with the ground,

swing/stance phases of the gait, and timing for each step.
Ink pads placed on the soles recorded the path of motion

including step width, step length, stride length, cadence,

and walking velocity (fig. I).

73



Gait measures

A

D

D

Step width = (A - B)
Step length = C
Stride length = D

Cadence = no. steps/unit time
i=n

Velocity = T_ Ci/elapsed time
i=1

Figure 1. Schematic of gait measurements.

Results and Discussion

Posture and equilibrium tests- Amplitude of body sway

was analyzed as a function of the exercise training

re_mens. The dispersion index, representing the standard

deviation of 200 samples of the body's center of gravity

(a measure of postural instability), increased by 20%

(P < 0.05) following the 30<1 bed rest period, and

returned to pre-bed rest values by the fourth day of

recovery. The general increase of postural instability

during bed rest was not influenced by either exercise

training regimen.

Gait test- On the initial walking attempts following bed

rest there were significant (P < 0.05) decreases in step

length, stride length, and walking velocity in all three

groups combined (fig. 2). These changes were not

influenced by the exercise training regimens. By the

fourth day of recovery all pre-bed rest values were
restored. No other significant changes were observed.
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Conclusion

Thus, while the bed rest deconditioning resulted in

deterioration of body stability and gait parameters, neither

intensive isotonic nor isokinetic exercise training during

bed rest had a significant influence on posture, equilib-

rium, or walking gait measurements.
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Figure 2. Mean (±SE, N = 19) step length, stride length,

and walking velocity during the ambulatory control

(days -7 and-2) and recovery (R + 1, R + 4) periods.
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VASCULAR VOLUMES

Effect of leg exercise training on vascular

during 30 days of 6 ° head-down bed rest

volumes

J. E. GREENLEAF, J. VERNIKOS, C. E. WADE, AND P. R. BARNES

Li[e Science Division, NASA Ames Research Center, Moffett Field 94035-1000; Letterman Army Institute

of Research, Presidio of San Francisco 94129; and Department of Biological Sciences,

San Francisco State University, San Francisco, California 94132

GREV.NLEAF, J. E., J. VERNIKOS, C. E. WADE, AND P. R.
BARNES. Effect of leg exercise training on vascular volumes dur-
ing 30 days of 6 ° head-down bed rest. J. Appl. Physiol. 72(5):
1887-1894, 1992.--Plasma and red cell volumes, body density,
and water balance were measured in 19 men (32-42 yr) con-
fined to bed rest (BR). One group (n = 5) had no exercise train-
ing {NOE), another near-maximal variable-intensity isotonic
exercise for 60 rain/day (ITE; n = 7), and the third near-maxi-
mal intermittent isokinetic exercise for 60 rain/day (IKE; n =
7). Caloric intake was 2,678--2,840 kcal/day; mean body weight
(n = 19) decreased by 0.58 + 0.35 (SE) kg during BR due to a
negative fluid balance (diuresis) on day 1. Mean energy costs
for the NOE, and IKE, and ITE regimens were 83 (3.6 __.0.2 ml
O2" rain -1" kg-1), 214 (8.9 +_0.5 ml. rain -1- kg-1), and 446 kcal/
h (18.8 _ 1.6 ml. rain -_ .kg-_), respectively. Body densities
within groups and mean urine volumes {1,752 - 1,846 ml/day)
between groups were unchanged during BR. Resting changes in
plasma volume (ml/kg) after BR were -1.5 _+ 2.3% (NS) in
ITE, -14.7 _+2.8% (P < 0.05) in NOE, and -16.8 _+2.9% (P <
0.05) in IKE, and mean water balances during BR were +295,
-106, and +169 ml/24 h, respectively. Changes in red cell vol-
ume followed changes in plasma volume. The significant
chronic decreases in plasma volume in the IKE and NOE
groups and its maintenance in the ITE group could not be ac-
counted for by water balance or by responses of the plasma
osmotic, protein, vasopressin, or aldosterone concentrations or
plasma renin activity. There was close coupling between rest-
ing plasma volume and plasma protein and osmotic content. It
appears that the ITE training protocol is better than the IKE
protocol for maintaining plasma volume during prolonged ex-
posure to BR.

plasma volume;red cellvolume; bloodvolume;body density;
waterbalance

WHEN THE BODY MOVES between horizontal and upright
positions, early accompanying responses are fluid shifts
from the thorax to the lower extremities and between the

vascular and interstitial fluid spaces. The initial trans-
vascular shifts are stimulated mainly by changing hydro-
static pressures within the cardiovascular system.
Standing from a horizontal posture causes increased fil-
tration of plasma to the interstitial fluid space, and re-
clining horizontally after standing induces a reverse flow
(23). Fluid shifts and the resulting changes in vascular
fluid volume and distribution play important roles in con-
trolling total body fluid volumes during exposure to pro-
longed bedrest (10, 12, 26), microgravity (11, 12, 21, 24),
acceleration (15, 16), and orthostatic stress (7, 16, 20).

Physical exercise training by ambulatory subjects in-
duces a chronic increase in plasma volume (hypervol-
emia) that appears to be associated with increased activ-
ity of the renin-aldosterone system, which promotes in-
creased plasma Na ÷ content, and with increases in
plasma vasopressin and plasma protein content, which
enhance vascular fluid volume (4-6).

Prolonged exposure to bed rest without accompanying
intensive physical exercise training results in chronic hy-
povolemia (14, 26, 27). Moderate continuous isotonic leg

exercise (68% of maximal 02 uptake) for 1 h/day pro-
vides some attenuation of the hypovolemia during 14
days of horizontal bed rest; hypovolemia drops from
-12.6% with no exercise to -7.8% with isotonic exercise

training (16). Smirnova et al. (26) were able to maintain
plasma volume at +3.0 _+ 9.6% after 120 days of 5 ° head-
down bed rest with an unspecified set of high-speed,
rapid-forced, and passive-active extension exercise for
gravity muscle groups.

The purposes of the present study were to determine
whether near-maximal variable-intensity isotonic and
intermittent isokinetic exercise training would maintain
plasma volume during 30 days of 6 ° head-down bed rest
and to relate the levels of hypovolemia to body fluid bal-
ances. This is the third in a series of reports from this
study. The work capacity (13) and orthostatic responses
(20) from the interrelationship of these bed rest and ex-
ercise countermeasures have been published previously.

METHODS

The subjects were 19 men (aged 32-42 yr) who passed a
comprehensive medical examination and, after extensive
briefing and discussion, gave their informed written con-
sent to the experimental conditions. All subjects were
nonsmokers, and none took nonprescribed medications.
They were of average anthropometric composition and
working capacity: age, 36 _+ 1 yr; height, 178 +_ 2 cm;

weight, 76.5 _+ 1.8 kg;, peak 02 uptake ('v'o2; supine), 3.36
+ 0.12 l/rain (44 _+ 2 m1-1. rain -1- kg-_); leg strength, 690
_+ 23 N. m (13). No adverse health problems were ob-
served or reported during the study.

Procedure. On the basis of age, peak V02, and strength,
the men were divided into three groups: no-exercise
training control (NOE; n = 5), isotonic (model 846 T,
Quinton Imaging/Ergometer Seattle, WA) exercise
training (ITE; n = 7), and isokinetic (Lido isokinetic er-
gometer, Loredan Biomedical, Davis, CA) exercise train-
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FIG. 1. Daily mean body weights during ambulatory control, bed

rest, and ambulatory recovery (Amb rec) periods. Solid line, mean body

weight of the 3 groups (n = 19). *P < 0.05 compared with bed-rest day 0;

fP < 0.05 compared with bed-rest day 30.

ing (IKE; n = 7). After a 3-too familiarization period, 12
subjects (4 NOE, 4 ITE, and 4 IKE) entered the Human
Research Facility at Ames Research Center for testing in
July and August 1986. The other 7 men (1 NOE, 3 ITE,
and 3 IKE) were tested in August and September 1986.
The protocol was 7 days of ambulatory control with di-
etary equilibration and collection of control data, 30 days
of 6 ° head-down bed rest, and then 4.5 days of ambula-
tory recovery (Fig. 1). Sitting ergometer exercise (50%
peak Vow) was performed for 30 rain/day during ambula-
tory control to retard the semiconfinement decondition-
ing. The subjects were supervised 24 h/day while in the
Human Research Facility, and room lighting was on be-
tween 0700 and 2300 h. We have no evidence that any
subject stood up during the bed-rest period; all testing,
showering, and excretory functions were done in horizon-
tal or head-down positions. The subjects were allowed
one pillow and to rise on one elbow to eat.

Diet and anthropometric measurements. The diet was
composed of fresh and frozen foods. Seventeen different
daily menus were rotated sequentially during each 42-
day study. The prescribed daily intake was 2,800 kcal for
the NOE group and 3,100 kcal for the ITE and IKE
groups. No caloric adjustment was made for body weight.
Because of the problem with arranging meals around the
exercise periods, dislike of some foods, and occasional
gastrointestinal disturbances, all the prescribed food was
not consumed (Table 1). Composition of food consumed
was calculated from values established by Gebhardt et al.
(9). Water and other noncaloric beverages were con-
sumed ad libitum and measured.

Body weight was measured dally (horizontally during
bed rest) in the morning after breakfast (Fig. 1). Body fat
content was calculated from body density, corrected for
residual volume, which was measured before bed rest and
on day 30 of bed rest by underwater weighing (2): body
lean mass = 100 - %body fat.

Exercise regimens. Details are presented elsewhere (13,
20). Briefly, the two exercise groups worked for two 30-
rain periods/day for 6 days/wk, and peak "_o2 was mea-
sured weekly in all three groups with leg exercise on the
cycle ergometer. The ITE regimen involved continuous
2-rain work bouts at 40% of peak Vo2 alternating with
2-rain work bouts at levels of Vo 2 that increased progres-
sively to 90% of peak Vo 2 (e.g., 2 rain at 40%, 2 rain at
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60%, 2 rain at 40%, 2 rain at 70%). The IKE regimen
employed 5 repetitions/10 s (90-100 ° range of motion) of
maximal knee flexion and extension force at a speed of
100°/s followed by 50 s of rest, for a total time of 15 rain.
Then the other leg was exercised similarly for 15 rain. All
exercise training and testing were performed with the
subjects in the supine position.

The exercise regimens were designed to maintain peak
Vo2 (ITE) and muscular strength and endurance (IKE)
at pre-bed-rest levels after 30 days of bed rest. Although
both exercise training regimens were conducted using
mainly thigh muscle groups, many trunk, shoulder, arm,
and forearm muscles were activated as loads approached
peak levels with the ITE regimen, and particularly with
IKE regimen, because both flexion and extension move-
ments were of maximal intensity and arms were used for
stabilization.

Blood analyses. Plasma total protein concentration was
measured with an American Optical refractometer, mi-
crohematocrit was measured using heparinized microhe-
matocrit tubes spun for 5 rain at 11,500 rpm, and hemo-
globin was measured with the cyanomethemoglobin
method (Coulter Electronics, Hialeah, FL). Plasma os-
molality was measured by freezing-point depression
(model 3DII, Advanced Instruments Digimatic Osmome-
ter, Needham Heights, MA). Change in plasma protein
and osmotic contents were calculated (28). Plasma vaso-
pressin was measured with a modified radioimmunoas-
say {25), plasma renin activity with a radioimmunoassay
for angiotensin I (New England Nuclear, Boston MA),
and plasma aldosterone by radioimmunoassay with a kit
(Diagnostic Products, Coat-A-Count, Los Angeles, CA).
Plasma volume was measured on day-7 of the control
period and days 8 and 30 of bed rest with the Evans blue
dye dilution technique (3, 17). After the subjects rested
for 30 rain in the supine position, "--5 ml of the 0.5%
aqueous dye solution was injected intravenously (the ex-
act volume was determined by differential syringe
weights), and an equilibrium blood sample was with-
drawn 10 rain later. Blood volume (BV) was calculated
from the plasma volume (PV) and hematocrit (Hct),
which was corrected for trapped plasma (0.96) and whole
body Hct {0.91)

[ ]BV = PV x 100 - (Hct x 10 - 2)(0.96)(0.91)

red cell volume (RCV) = BV - PV

plasma protein content = PV x [plasma protein](g/dl)

plasma osmotic content

= PV × plasma osmolality (mosmol/kg)

Fluid intake and urine volumes. Fluid intake included
all liquid intake but not free water in the food. Twenty-
four-hour urine volumes were measured dally beginning
with the morning excretion.

Statistical analyses. The University of California, Los
Angeles BMDP Program P2V was used for t tests on
dependent {paired) and independent variables and for
analysis of variance. Significant time-related differences
were identified with the Newman-Keuls, Tukey, and
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TABLE1. Mean daily dietary composition

Energy,kca! CHO,g PRO,g FAT,g H20,ml Na,g K,g Ca,g P,g

No exercise(n = 5)

2,678_+75 339___11 113+_2 97+_3 2,080+_104 5.4+_0.2
(62) (21) (18)

Isotonicexercise(n = 7)
2,833+_82 365+_12 114+_3 102+_3 2.512+_109 5.5+_0.2

(63) (20) (18)

Isokineticexercise(n = 7)
2,890+_75 375+_11 112+_3 104+_3 2,389+_100 5.6_+0.2

(63) (19) (18)

All subjects (n = 19)
2,813+_47 362+_7 113+_2 101+_2 2,353+_70 5.5_+0.1

(63) (20) (18)

4.9+_0.0 1.3+_0.0 1.8+_0.0

4.8_+0.1 1.3±0.0 1.9+-0.0

4.8+_0.1 1.3+_0.0 1.9±0.0

4.8+_0.1 1.3±0.0 1.9+_0.0

Valuesare means _+SE. CHO, carbohydrate;PRO, protein. Values in parentheses represent percentage of total intake.

Dunnett tests. The null hypothesis was rejected when
P < 0.05, and nonsignificant differences were denoted by
NS. Values are expressed as means _+SE unless noted.

RESULTS

Vascular volumes. Plasma volume in the ITE group
was unchanged durilag bed rest (-1.5 _+2.3%), while vol-
umes for the NOE and IKE groups decreased progres-
sively (P < 0.05), reaching -14.7 + 2.8 and -16.8 _+2.9%,
respectively (Fig. 2). Red cell volume also was unchanged
in the ITE group during bed rest. On bed rest day 8 it was
unchanged in the NOE group but decreased by 7.0 + 2.0%
(P < 0.05} in the IKE group. By day 30 red cell volume
decreased (P < 0.05) in the NOE and IKE groups to reach
-10.3 +_2.8 and -17.2 + 4.1%, respectively. Thus, during
bed rest there was a close association among the un-
changed plasma, red cell, and total blood volumes in the
ITE group. On the other hand, changes in plasma and red
cell volumes and plasma and total blood volumes were
dissociated only in the NOE group by bed rest day 8; i.e.,
red cell and total blood volume reductions were delayed
by exercise training, but they decreased to approximately
the plasma volume levels by day 30. The IKE regimen

r--'l I_ooxe¢ctN
_ ISC_L_DaVcoxorclN

Isoklnallcoxou'c_

tended to accentuate red blood cell loss by day 30 com-
pared with the corresponding NOE level.

The correlation coefficient of 0.50 (P < 0.05) between
percent change in peak _'o2 and percent change in resting
plasma volume for the three groups combined indicates
that only 25% (r2) of the variance in peak _ro2 can be
accounted for by the changes in plasma volume; correla-
tion coefficients for each group separately were 0.22 (NS)
for NOE, 0.12 (NS) for ITE, and 0.39 (NS) for IKE.

Fluid intake and urinary excretion. There were no sig-
nificant differences in voluntary fluid intake (Fig. 3, top)
among the three groups in the ambulatory control period
[2,198 ___96, 2,236 ___84, and 2,084 __+113 (SE) ml/24 h for
NOE, ITE, and IKE, respectively]. During bed rest, how-
ever, compared with the NOE group level of 1,715 _+23
ml/24 h, fluid intakes were higher (P < 0.05) in both IKE
and ITE groups (1,944 __+27 and 2,047 _+ 26 mi/24 h,
respectively) and were different (P < 0.05) from each
other. In recovery, mean intakes for all groups were not
significantly different (1,825 __+122, 2,026 _+ 91, and
1,997_ 110 ml/24 h for NOE, ITE, and IKE, respec-
tively).

There were no significant differences in mean levels of
urinary volumes among the three groups throughout the
study (Fig. 3, bottom). Greater fluid intakes with un-

0 Plssma volume (mOko) Red cog! voU_w (m/4(g) I Blood volume (mi4(g)

ILLINil I lII I1111
i-"t !1 lIT -t I

FIG. 2. Percentchange in plasma, red cell, and
total bloodvolumes on bed-rest days 8 and 30. Val-
ues are means +-SE. *P < 0.05 compared with
corresponding day -1 ambulatory control value.
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FIG.3. Dally mean voluntaryfluidintakesand urinaryvolumes
duringambulatorycontrol,bed rest,and ambulatory recoveryperiods.

changed urinary outputs reflected the increased sweating
and respiratory water losses during exercise. In recovery,
mean urinary volumes for ITE and IKE groups (1,781
and 1,776 ml/24 h, respectively) were higher (P < 0.05)
than for the NOE group (1,553 ml/24 h). These increased
urinary outputs for the ITE and IKE groups reflected the
greater fluid intakes.

Fluid balance. There was no significant difference in
fluid balance (fluid intake - urinary volume) among the
three groups in the ambulatory control period: the mean
values were 171 _+99, 38 _ 77, and 150 _+44 ml/24 h in the
NOE, ITE, and IKE groups, respectively (Fig. 4). There
was a significant negative water balance on day I of bed
rest in the NOE group, but not in the ITE or IKE groups:
NOE, -776 ml/24 h (P < 0.05); ITE, -158 ml/24 h (NS);
and IKE, -398 ml/24 h (NS); NOE vs. ITE (P < 0.05),
IKE vs. NOE or ITE (NS). During the full bed-rest pe-
riod the mean fluid balances were all significantly differ-
ent (P < 0.05) from each other: 295 _+40, 169 _ 36, and
-106 + 42 ml/24 h in ITE, IKE, and NOE, respectively.
Recovery fluid balances were all positive and not differ-
ent from each other, and they ranged from 182 to 246
ml/24 h.

Blood variables. With significant but essentially un-
changed plasma protein concentrations for the three
groups, the change in protein content virtually followed
the responses of the plasma volumes (Fig. 5). The excep-
tion was the change in protein content in the IKE group
on day 30. Plasma osmolality was unchanged in all
groups during the control and bed-rest periods. Also un-
changed during the three periods in the three groups
were mean resting plasma vasopressin (range 1.12-2.66
pg/ml) and aldosterone (range 11.16-18.16 ng/dl) con-
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centrations and renin activity (range 0.80-3.01 ng angio-
tensin I. m1-1. h-l).

Mean data for plasma protein and osmotic contents
for each group at days 8 and 30 of bed rest were highly
correlated (r = 0.93, P < 0.05; Fig. 6). Points for the IKE
and NOE groups were negative, whereas those for the
ITE group were positive, indicating retention of osmols
or retention of osmotic and protein content.

Diet, body weight, and body composition. The group
mean data for daily caloric intake varied between 2,678 _+
75 and 2,890 +_ 75 kcal/day (Table 1). The mean daily
intake for all 19 subjects was 2,813 _+47 kcal/day, and the
average composition by weight was ---63 % carbohydrate,
20% protein, and 18% fat. The mean daily caloric con-
sumption over the 42 days was 2,442 _ 50 kcal/day for
the subject with the lowest intake (NOE) and 3,098 + 37
kcal/day for the subject with the highest intake (ITE).
The mean daily volume of free water in the diet followed
caloric intake: 2,080 + 104, 2,512 _ 109, and 2,389 _ 100
ml for NOE, ITE, and IKE, respectively. Electrolyte con-
tents were within the normal range and virtually identi-
cal for the three groups (Table 1).

The actual mean daily caloric intakes of 2,678, 2,833,
and 2,890 kcal for NOE, ITE, and IKE, respectively, re-
sulted in body weight changes during bed rest {day 1-day
30) of-1.01 _+0.81 (SE) kg (NS), -0.85 +_0.59 kg (NS),
and 0.00 _+0.52 kg (NS), respectively._ig_. Compared
with ambulatory control day -1 data, mean body weight
(n = 19) decreased by 0.75 kg (P < 0.05) on bed-rest day I
and by 1.32 kg (P < 0.05) on bed-rest day 30. Mean body
weight was unchanged on recovery day I but increased by
0.63 kg (P < 0.05) on recovery day 2 and continued to
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FIG. 4. Daily mean estimated fluid balances (fluid intake - urinary
volume) during ambulatory control, bed rest, and ambulatory recovery
periods. Solid and dashed lines (other than 0 line) represent mean lev-
els for that period. *P < 0.05 compared with zero.



0

< >o-16

-20

0

_:g -4

-12

-15

..... -0 No exercise {N = 5)
------& Isotonic exercise (N = 7)
-- ----e Isokinetic exercise (N = 7)

VASCULAR VOLUMES DURING BED REST

6

- t=_ \
"|_ "x.. ..._----_

=_[aS

g - con_ I i I ,

-6 0 6 12 18 24 30 +4
Time (days)

FIG. 5. Percent change in plasma volume, percent change in plasma

protein content, plasma protein concentration, change in plasma os-

motic content, and plasma osmolality during ambulatory control, bed-

rest,add ambulatory recovery periods. Values are means +__SE. Plasma

protein content on day 30 was calculated with day 21 plasma protein

concentration data. *P < 0.05 compared with zero or ambulatory con-

trolvalue.

increase thereafter. Body weight on recovery day 2 had
returned to control day -1 levels._v-igr_.

There were no significant changes in body density or
fat content in any group during bed rest (control day -5
vs. recovery day 2): ITE, 1.050 vs. 1.051 (21.2 vs. 20.5%
fat); NOE, 1.062 vs. 1.062 (16.0 vs. 16.8% fat); and IKE,
1.081 vs. 1.077 (8.7 vs. 7.7% fat). Lower density is re-
flected in higher fat content. Both density and fat con-
tent were lower (P < 0.05) in IKE than in ITE and NOE,
which were not different from each other.

Peak f/o_ and strength. Changes in peak Vo2 from con-
trol to bed-rest day 28 were as follows: NOE, 44 _+ 4 to
36 _ 3 ml. rain -'. kg -' {-18.2%, P < 0.05); ITE, 39 _+4 to
40 _+3 ml. rain -'. kg -' (+2.6%, NS); and IKE, 44 _+3 to
40 +_ 2 ml. rain -'- kg -' (-9.1%, P < 0.05) (13). There
were no significant changes in any group in knee peak
torque (right knee flexion or extension), knee flexion
average total work, or shoulder mean total work, mea-
sured at weekly intervals. There were significant (P <
0.05) changes in knee extension average total work (de-
crease in NOE and increase in IKE) and in shoulder total
peak torque (increases in ITE and IKE) at the end of bed
rest.

Mean energy costs for the NOE (resting), IKE, and
ITE regimens were 83 (3.6 _+0.2 ml 02" rain -'' kg-'), 214

(8.9 _+ 0.5 ml-rain -'- kg-'), and 446 kcal/h (18.8 __ 1.6
ml. rain-', kg-'), respectively. Mean daily resting metab-
olism was 0.27 _+0.1 l/rain during the control period and
0.26 _+0.1 l/rain (NS) during week 4 of bed rest (80 kcal/
h). Active exercise time was 6.7 and 60.0 rain/day for IKE
and ITE, respectively.

Summary 1) During bed rest, there were no significant
changes in body weight, body density, or body fat content
in any group. Overall (n = 19) mean body weight de-
creased by 0.75 kg (P < 0.05) on bed-rest day 1 and re-
mained at this level throughout bed rest. 2) During bed
rest, urinary volumes were similar in the three groups,
voluntary fluid intakes were higher in the two exercise
groups, and fluid balance was higher (P < 0.05) in the two
exercise groups. 3) During bed rest, compared with the
NOE group's mean energy utilization of 83 kcal/h, en-
ergy cost increased significantly to 214 (2.5-fold) and 446
kcal/h (5.2-fold) with IKE and ITE regimens, respec-
tively. 4) Active exercise time was 6.7 and 60.0 rain/day
for ISE and ITE groups, respectively, with corresponding
plasma volume changes of -16.8 and -1.5% at the end of
bed rest. 5) During bed rest the significant decreases in
resting plasma volume in the IKE and NOE groups and
its maintenance in the ITE group could not be accounted
for by resting responses of plasma osmotic, protein, va-
sopressin, or aldosterone concentrations or renin activ-
ity. 6) At the end of bed rest only 25% of the variance in
percent change in peak Vo2 could be accounted for by the
percent change in plasma volume.

DISCUSSION

Plasma volume was maintained at the ambulatory
control level during bed rest in the ITE group: the IKE
regimen had no effect on plasma volume because the IKE
level of hypovolemia was similar to that of the NOE
group. Hematocrit and hemoglobin concentrations were
unchanged during bed rest in the ITE group and were
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elevated (or tended to be) in the IKE and NOE groups,
reflecting the respective changes in plasma volume. This
chronic hemoconcentration during bed rest was similar
to that observed during a 14-day horizontal bed rest
study with isotonic and isometric exercise training (14).
In that study, two 30-rain bouts of continuous isotonic
cycle, ergometer leg exercise per day at an average rela-
tive Vo2 of 68% resulted in 7.8% hypovolemia, compared
with 12.6% hypovolemia with no exercise training. In the
present study the average relative Vo_ with the ITE regi-
men was only 50% for two 30-rain bouts/day (with peak
level to 90%), but plasma volume was maintained. Com-
pared with intermittent high-intensity isokinetic exer-
cise and higher average intensity continuous isotonic ex-
ercise, it seems that near-maximal variable-intensity iso-
tonic exercise is more effective for maintaining plasma
volume and probably extracellular fluid volume during
prolonged bed rest. Thus, exercise intensity appears to
be more important than duration for maintenance of
plasma volume. However, with peak exercise, whether it
was basically isotonic or isokinetic, the upper limb,
shoulder girdle, and trunk muscles were used for support,
sotherewas no cleardistinctionbetweenthetwo typesof
contractions.Thus itwas thesummation ofvarioustypes
ofmuscular contractionsinthe ITE and IKE regimens
thatwas responsiblefor the differentfluidresponses.
Exercisedurationmay alsohave had an effect:the ITE
regimen was 60.0 min/day and the IKE regimen was only
6.7 rain/day. Perhaps performance of isokinetic exercise
for >10 s/min would have had a greater effect on reduc-
ing the hypovolemia, but undue fatigue and injury may
result. Of the three subjects who required alterations in
_heir training regimens, two were in the IKE group: one
had problems with muscle pain and the other had gastro-
intestinal distress (13). Thus the stimuli for maintaining
plasma volume are related more to the type (isotonic),
nature (variable high-intensity continuous), and, per-
haps to a lesser extent, duration of exercise.

The mean decrease in plasma volume of the NOE
group of 14.7% was similar to that in the study of Taylor
et al. (27), where plasma volume decreased 15.5% in men
who were exercise-trained before their horizontal bed

rest period of 21 days. (Taylor et al. also measured
plasma volume with Evans blue dye.) Our men exercised
for 30 rain/day at _50% of their peak Vo_ in the ambula-
tory control period. Any exercise-induced hypervolemia
before bed rest may result in a greater hypovolemia after
bed rest. In a study by Smirnova et al. (26), four no-exer-
cise control men lost only 4.0% of their plasma volume
after 120 days of 5° head-down bed rest.

Because body densities of the three groups in our study
were similar, it appears that the differential changes in
plasma volume during bed rest with the three exercise
regimens could not be attributed to or be a reflection of
body composition changes. Smirnova et al. (26) reported
similar decreases in extracellular (-12.0 to -15.0%), in-
terstitial (-14.3 to -17.0%), and plasma (3.0 to -7.8%)
volumes in four groups of subjects after 120 days of head-
down bed rest where they underwent widely different ex-
ercise and pharmacological protocols during bed rest.
Their exercise training groups tended to have less severe
hypovolemia. Also, in the present study, the nonsignifi-
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cant group correlations between change in peak 402 and
change in plasma volume suggest that, at best, only 25%
of the variance in the former could be accounted for by

changes in the latter. Since plasma volume was un-
changed in the ITE group during bed rest, the mecha-
nism controlling this volume was not linearly related to
mean exercise Vo 2 or energy expenditure, because
the level of hypovolemia was similar: -16.8 and -14.7%
in the IKE and NOE regimens, respectively, which had
different energy expenditures of 214 and 83 kcal/h, re-
spectively.

There was a partial association between the changes in
plasma volumes and body water balances during bed rest.
The essentially unchanged plasma volume with the ITE
regimen accompanied the highest water balance of +295
ml/24 h, and the 14.7% reduction in plasma volume with
the NOE regimen accompanied the lowest (negative)
water balance of 106 ml/24 h. With the IKE regimen,
however, the hypovolemia was -16.8%, similar to the
NOE group, but water balance was positive (+169 ml/24
h), similar to the ITE group. Thus, there does not seem to
be a direct association between the level of plasma vol-
ume and water balance. It is clear, however, that plasma
and extracellular fluid volumes should ultimately de-
crease if fluid balance remains negative.

Our original hypothesis when designing these exercise
training protocols was that intensity was more important
than duration for maintaining work capacity and extra-
cellular fluid volume (13). Because of the nature of iso-
tonic and isokinetic exercise and the fact that we empha-
sized intensity rather th.an duration, it was not practical
to equate work-induced Vo2; the time for isokinetic exer-
cise and rest periods would have been much longer than 1
h/day. Longer isokinetic exercise time could have had a
more positive effect for attenuating the hypovolemia, but
risk of injury increases. Similar results were obtained
from a previous 14-day horizontal bed-rest study where
plasma volume was reduced by 12.6% with no exercise, by
11.3% with isometric leg exercise (30-s exercise-rest pe-
riods for 1 h/day), and by 7.8% with 1 h/day of continu-
ous cycle ergometer leg exercise at a relative "_o2 of 68%
(14). Compared with those results, maintenance of
plasma volume in the present study, at an average exer-
cise load of only 50%, gives the exercise intensity factor
additional importance.

The thoracic hypervolemia-mediated diuresis that oc-
curred during the first 24-48 h of bed rest eliminated the
"excess fluid," and plasma volume decreased by 12-15%
(extracellular volume by 5-7%) between days 2 and 8,
when no exercise or mild exercise training was performed
(14, present study). Plasma volume continued to decline
more slowly (exponentially) thereafter and reached se-
miequilibrium at about -20 to -25% at 30-100 days of
bed rest (14). There are few reliable measurements of
plasma and extracellular fluid volumes beyond 30 days of
bed rest when subjects were restricted to the horizontal
or head-down body position. Because plasma concentra-
tions of essentially all constituents are within the normal
ambulatory range (some exceptions are hemoglobin and
hematocrit, see Ref. 14) during prolonged bed rest with
accompanying hypovolemia, the constituent contents
must have been reduced proportionally by an as yet un-
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defined mechanism involving some combinations of re-
duced production, increased filtration, increased seques-
tration, or increased excretion. Major mechanisms con-
trolling plasma volume would encompass variations in
hydrostatic, colloid osmotic, crystalloid osmotic, and sys-
temic blood pressures.

Resting systemic systolic and diastolic blood pressures
were unchanged throughout the three periods (14). The
similar responses between percent changes in resting
plasma volumes and protein contents on bed rest day 8
with data from all three groups illustrate tight coupling
between these two variables. A similar coupling was
found between mean resting changes in plasma protein
and osmotic contents. So the major question is, How
does exercise training maintain plasma volume during
bed rest when the control (no-exercise training) response
is significant hypovolemia?

Clearly, maintenance of plasma volume during bed
rest in the ITE group was accompanied by minimal loss
of plasma protein content and no net loss of plasma os-
motic content. The greater losses in the IKE group were
similar to those in the NOE group. The shorter IKE regi-
men of 6.7 min/day was insufficient to prevent hypovole-
mia, but it must have been the more intensive ITE inter-
vals at relative 402 of 70, 80, and 90% that stimulated the
plasma volume maintenance mechanism, because a con-
tinuous ITE regimen of similar duration during bed rest
at 68% of maximum Vo_ resulted in 7.8% hypovole-
mia (14).

It has been suggested that isotonic exercise-induced
hypovolemia in ambulatory subjects is caused mainly by
increased hydrostatic and systemic blood pressures (19),
because the level of hypovolemia is proportional to exer-
cise load; the ensuing isocontent shifts of NaC1 accom-
pany minor (<2%) shifts of plasma protein content (18,
22). Restitution of plasma volume after exercise ceases
probably occurs via capillary absorption of interstitial
fluid due to the increased plasma colloid osmotic pres-
sure. Because oncotic pressure is an important mecha-
nism for acute plasma reconstitution and more chronic
hypervolemia (1), there would be a requirement for addi-
tional protein to enter the vascular system. A small
quantity may return through the capillaries and perhaps
more may enter via the lymphatic system's thoracic duct
(22), but definitive data on these latter two hypotheses
during exercise in humans are lacking. Some results sug-
gest that osmotic pressure may play a role via stimula-
tion of vasopressin: the threshold occurs at a relative
work intensity >50%, and concomitant exercise induced
hypovolemia >4% to increase plasma osmolality suffi-
ciently to stimulate vasopressin (4-6). The unchanged
resting plasma vasopressin concentrations do not appear
to account for the significantly different water balances
in the three groups. Atriopeptide concentrations increase
during and immediately after exercise in humans (1, 8).
They also facilitate escape of albumin and fluid from the
systemic circulation of resting rats in response to infu-
sion of pharmacological doses (29). It has not been firmly
established whether increases in plasma vasopressin or
atriopeptins play a role in the control of plasma volume
during exercise training, but influx of proteins into the
vascular space appears to be the most important mecha-

nism for the acute and probably chronic hypervolemia
after exercise and exercise training.

The findings indicate that the most important factors
for stimulating the maintenance of plasma volume dur-
ing bed-rest acclimation (deconditioning) are type (iso-
tonic cycle ergometer), nature (continuous, variable,
high intensity), and, to some extent, time of exercise.
These factors are not necessarily independent.

We are grateful to the 125 people who had significant roles in this
study. We are especially grateful to Dee O'Hara (Human Research
Facility) and Edith Crofoot and the nursing and aides staff; Andrew
Ertl and the exercise testing group (University of California Davis),

including Todd Trowbridge, Gene Myers, and Dave McKenzie; Mar-
gorie Hunt (Letterman Army Institute of Research), Robin Williams
and Victoria Major and the food preparation staff; Ralph Pelligra; Gall
Bennet-Hiley and Ranita Dalton (Bionetics Corp.). We also thank At-
ticus Tysen for statistical analyses; Debra Fegan Meyer and Bridget
Eller for manuscript preparation; the coinvestigators and their staffs;
and the Laboratory for Human Environmental Physiology support and
technical staff, including Jeff Ball, Victor D'Aloia, Sally Greenawalt,
Teresa Hutchinson, Linda Kirby, Sandra Lewis, Joann Meredith, An-
drea Ertl, and Joan Silver. We especially thank the members of Ameri-
can Institute of Biological Sciences review panel who shared their
thoughts, comments, and recommendations with us: Reggie Edgerton,
Philip Gollnick, William Haskell, Michael Pollock, William Stauber,

and Charles Tipton (Chair).
This work was supported by National Aeronautics and Space Admin-

istration Tasks 199-21-12, 199-22-12, 199-22-22, 199-22-32, 199-22-44,
and NAG2-410 and US Army Task MRDC-3A161101A-91C.

Address for reprint requests: J. E. Greenleaf, Laboratory for Human
Gravitational Physiology (239-11), NASA Ames Research Center,
Moffett Field, CA 94035-1000.

Received 12 July 1990; accepted in final form 21 November 1991.

REFERENCES

I. ALTENKIRCH, H. U.,R. GERZER, K. A. KmSCH, J.WF_L, B. HEY-
DUCK, I.SCh'ULTF_.S,AND L. ROCKER. Effectofprolongedphysical
exerciseon fluidregulatinghormones.Eur.J.Appl.Physiol.Occup.
Physiol.61:209-213,1990.

2. BROZEK, J.,F. GRANDE, J.T. ANDERSON, AND A. KEYS. Densito-
metricanalysisofbody composition:revisionofsome quantitative
assumptions.Ann. NYAcad. Sci 110:113-140,1963.

3. CAMPBELL, T. J.,B. FROM.MAN, AND E. B. REEVE. A simple,rapid,
and accuratemethod ofextractingT-1824 from plasma,adaptedto
the routinemeasurement of bloodvolume. J. Lab. Clin.Med. 52:

768-777,1958.
4. CONVERTZNO, V. A.,P. J. BROCK, L. C. KEIL, E. M. BERNAUER,

AND J. E. GREF__LEAF. Exercisetraining-inducedhypervolemia:
roleofplasma albumin,renin,and vasopressin.J.Appl.Physiol.48:
665-669, 1980.

5. CONVERTINO, V. A., L. C. KEIL, E. M. BERNAtrER, AND J. S.
GREENLEAF. Plasma volume, osmolality,vasopressin,and renin
activityduring graded exercisein man. J. Appl.Physiol.50: 123-
128,1981.

6. CONVERTINO, V. A., L. C. KEIL, AND J. E. GREENLEAF. Plasma
volume, renin,and vasopressinresponsesto graded exerciseafter
training.J.AppL PhysioL 54:508-514,1983.

7. CONVERTINO, V. A.,L. D. MONTGOMERY, AND J.E. GREENLEAF.

Cardiovascularresponsesduringorthostasis:effectof an increase
in "v'o2_. Aviat. Space Environ. Med. 55: 702-708, 1984.

8. FI_UND, B. J., C. E. WADE, AND J. R. CI_rS^UGH. Effects of exer-
cise on atrial natriuretic factor. Release mechanisms and implica-

tions for fluid homeostasis. Sports Med. 6: 364-376, 1988.
9. GEBSARDT, S. E.,R. CtrrRuFELLI,AND R. H. MATTI-mWS (Edi-

tors).Composition o/Foods. Washington, DC: US Dept. of Agricul-
ture, 1978. (Handbook no. 8)
GPJ_NLF_, J. E. Physiological responses to prolonged bed rest
and fluid immersion in humans. J. Appl. Physiol. 57: 619-633, 1984.
GI_p.NI._, J. E. Mechanism for negative water balance during

weightlessness: a hypothesis. J. Appl. Physiol. 60: 60-62, 1986.
G_/u_, J. E. Hormonal regulation of fluid and electrolytes
during prolonged bed rest: implications for micro-gravity. In: Hot-

10.

11.

12.

83



VASCULAR VOLUMES DURING BED REST

monal Regulation of Fluid and Electro_'tes, edited by J. R. Clay-

baugh and C. E. Wade. New York: Plenum, 1989, p. 215-232.
13. GREENLEAF, J. E., E. M. BERNAUER, A. C. ERTL, T. S. TROW-

BRIDGE, AND C. E. WADE. Work capacity during 30 days of bed rest

with isotonic and isokinetic exercise training.J. Appi. Physiol. 67:

1820-1826, 1989.

14. GREENLEAF, J. E., S. M. BERNAUER, H. L. YOUNG, J. T. MORSE,

R. W. STALEY, L. T. Jtmos, AND W. VAN BEAUMONT. Fluid and

electrolyteshiftsduring bed restwith isometric and isotonic exer-

cise.J. Appl. Physiol. 42: 59-66, 1977.

15. GREENLEA_, J. E., P. J. BROCK, R. F. HAINES, S. A. ROSITANO,

L. D. MONTGOMERY, AND L. C. KEIL. Effect of hypovolemia, infu-

sion, and oral rehydration on plasma electrolytes, ADH, renin activ-

ity, and ÷G, tolerance. Aviat. Space Environ. Med. 48: 693-700,
1977.

16. GREENLF_J@', J. E., P. J. BROCK, D. SCIARAFFA, A. POLESE, AND R.

ELIZONDO. Effects of exercise-heat acclimation on fluid, electro-

lyte, and endocrine responses during tilt and +G_ acceleration in

women and men. Aviat. Space Environ. Med. 56: 683-689, 1985.
17. GREENLF_,AF, J. E., V. A. CONVERTINO, AND G. R. MANGSETH.

Plasma volume during stress in man: osmolality and red cell vol-

ume. J. Appl. Physiol. 47: 1031-1038, 1979.

18. GREENLEAF, J. E., V. A. CONVERTINO, R. W. STREMEL, E. M. BER-

NALrER, W. C. ADAMS, S. R. VIGNAU, AND P. J. BROCK. Plasma

[Na*], [Ca_*], and volume shifts and thermoregutation during ex-

ercise in man. J. Appl. Physiol. 43: 1026-1032, 1977.
19. GRF__,ENLF_a_, J. E., W. VAN BEAUMONT, P. J. BROCK, J. T. MORSE,

AND G. R. MANGSETH. Plasma volume and electrolyte shifts with

heavy exercise in sitting and supine positions. Am. J. Physiol. 236
(Regulatory Integrative Comp. Physiol. 5): R206-R214, 1979.

20. GREE_, J, E., C. E. WADE AND G. LEFTHERIOTIS. Orthostatic

responses following 30-day bed rest deconditioning with isotonic

and isokinetic exercise training. Avmt. Space Environ. Med. 60:

537-542, 1989.

21. GRIGORIEV, A. I. Correction of changes in fluid-electrolyte metabo-

lism in manned space flights. Aviat. Space Environ. Med. 54: 318-
323, 1983.

22. HARRISON, M. H., R. J. EDWARDS, AND D. R. LEITCH. Effect of

exercise and thermal stress on plasma volume. J. Appl. Physiol. 39:

925-931, 1975.

23. HtNGHOFER-SZALKAY, H., AND J. E. GREENLEAF. Continuous

monitoring of blood volume changes in humans. J. App:. Physiol.

63: 1003-1007, 1987.

24. JOHNSON, P. C. Fluid volumes changes induced by spaceflight. Acta

Astronaut. 6: 1335-1341, 1979.

25. KEIL, L. C., AND W. B. SEVERS. Reduction in plasma vasopressin

levels of dehydrated rats following acute stress. Endocrinology 100:

30-38, 1977.

26. SMIRNOVA, T. M., G. I. KOZYREVSKAYA, V. I. LOBACmK, V. V.

ZHIDKOV, AND S. V. ABROSIMOV. Individual distinctions of fluid-

electrolyte metabolism during hypokinesia with head-down tilt for

120 days, and efficacy of preventive agents. Kosm. Biol. Aviakosm.

Med. 20: 21-24, 1986.

27. TAYLOR, H. L., L. ERICKSON, A. HENSCHEL, AND A. KEYS. The

effect of bedrest on the blood volume of normal young men. Am. J.

Physiol. 144: 227-232, 1945.

28. VAN BEAUMONT, W., J. C. STRAND, J. S. PETROFSKY, S. G. HIPS-

KIND, AND J. E. GREENLEAF. Changes in total plasma content of

electrolytes and proteins with maximal exercise. J. Appl. Physiol.
34: 102-106, 1973.

29. ZIMMERMAN, R. S., N. C. TRIPPODO, A. A. MAcPHEE, A. J. MAR-

TINEZ, AND R. W. BARBEE. High-dose atrial natriuretic factor en-

hances albumin escape from the systemic but not the pulmonary.
circulation. Circ. Res. 67: 461-468, 1990.

84



MUSCLE ANATOMY

Lower Extremity Muscle Thickness and

Volume during 30-day 6 ° Head-Down Bed

Rest with Isotonic and Isokinetic Exercise

Training

S. Ellis, P. L. Lee, D. A. Ortendahl, R. H. Seizer,

L. C. Kirby, J. E. Greenleaf

Life Science Division, NASA Ames Research Center,

Moffett Field, CA 94035-1000; San Jose State University,

San Jose, CA 95192-0054; Jet Propulsion Laboratory,

Pasadena, CA 91109; and University of California-San
Francisco, South San Francisco, CA 94080

Abstract

Ellis S, Lee PL, Ortendahl DA, Seizer RH, Kirby LC,
C-reenleaf JE. Lower extremity muscle thickness and

volume during 30-day 6° head-down bed rest with

isotonic and isokinetic exercise training. Aviat. Space
Environ. Med. 1992; 63: XXXX-XXXX.

Muscle thickness and volume were measured in

19 bedrested (BR) men (32--42 yr) subjected to isotonic

(fiE, cycle ergometer) and isokinetic (IKE, torque

ergometcr) lower extremity exercise training, and no

exercise (NOE) training. Thickness was measured with

ultrasonography in anterior thigh---rectus femoris (RF)

and vasms intermedius (VI), and combined posterior

leg---soleus, flexor hallucis longus, and tibialis posterior
(S + FHL + TP)---muscles. Volume was measured with

magnetic resonance imaging (MRI) in the combined

posterior leg group (PLG) containing the (S + FHL + TP),

lateral and medial gastrocnemius, and flexor digitorum
longus muscles. Correlation coefficients between percent

changes in (S + FHL + TP) and (PLG) muscle groups

were: ITE 0.79 (P < 0.05), IKE 0.27 (NS), and NOE 0.63

(NS). Compared with ambulatory control values,

thickness of the (S + FHL + TP) decreased by 9%--12%

(P < 0.05) in all three test groups. The (RF) thickness was
unchanged in the two exercise groups, but decreased by

10% (P < 0.05) in the NOE. The (VI) thickness was

unchanged in the ITE group, but decreased by 129'o--16%

(P < 0.05) in the IKE and NOE groups. Total vol of
the (PLG) muscles decreased similarly (P < 0.05) by

4.39"0-7.7% in all test groups. Thus, intensive, alternating,

isotonic cycle ergometer exercise training is as effective

as intensive, intermittent, isokinetic exercise training for

maintaining thicknesses of some (RF, VI) anterior thigh

muscles but not posterior leg muscles during prolonged

BR deconditioning.

Introduction

Skeletal muscle wasting (atrophy) is a major response to

removal of weight-bearing loads and occurs with disuse

during limb casting (ref. 22), during prolonged bed rest

('BR) without additional exercise training (ref. 7), in

joint-casted bed-rested patients (ref. 19), and in some

astronauts during flight (ref. 25). Skeletal muscles

"unloaded" for a few weeks in ambulatory subjects

undergo reductions in mass and strength generally in

proportion to the duration of unloading. After several

weeks of joint immobilization, removal of a cast in

ambulatory patients reveals a striking reduction in limb
girth and strength, particularly in lean individuals;

atrophic changes can be ameliorated after several weeks

of normal activity (ref. 22). However, in limb casted

patients who had undergone prolonged (4-38 wk) BR

without remedial exercise training, there was no direct

relationship between the duration of joint immobilization

and magnitude of atrophy of casted muscle fibers, or

between the latter and girth of the casted limb (ref. 19).

Confounding factors contributing to the poor relationship

between limb girth and muscle mass during shorter-term

(<4 wk) joint immobilization and BR could be prefer-

ential loss of contractile protein (ref. 17), replacement of

muscle with fibrous tissue, change of muscle fiber penna-

tion angle or capillarization, differential changes in

intracelluiar and extracellular fluid-electrolyte shifts

(ref. 10) in and around muscle cells, and shifts in neural

stimuli to motor units and their firing frequency during
contractions (ref. 21). Another factor could be the

different methods used for measuring muscle atrophy:

computer assisted tomography (refs. 1 and 12), magnetic

resonance imaging (ref. 15), and ultrasonography (refs. 2,

13, and 14) have been used with some degree of success

for measuring muscle volume and oross-sectional area.

Inthisstudymagneticresonanceimaging (MRI) and

ulwasonographywere used toestimatechangesinlower

extremityskeletalmuscle volume and thickness,

respectively.

Thus,thepurposeofthepresentstudywas toinvestigate

theeffectsofisotonicand isokincticlowerextremity

exercisetrainingon volume and thicknessofanterior

thighand posteriorlegmuscle groupsduringbed-rest

deconditioning.

Methods

Subjects- Nineteen men; 36 _+SE 1 yr, 178 + 2 cm,
76.5 + 1.8 kg, 1.94 + 0.03 m 2, 44.2 mlO2.min -1.kg -1

(3.36 + 1.8 l.min -1) peak oxygen uptake, and

690 + 23 N-m knee peak isometric extension strength,

who passed a comprehensive medical examination and
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gave informed consent, were selected as subjects. They

were divided into three groups that were comparable on

the basis of age, peak _'O 2, and leg strength: no exercise

(NOE) training (N = 5), isotonic (dynamic) exercise (ITE)

training (N = 7), and isokinetic exercise (IKE) training

(N = 7); see reference 8.

Protocol- The protocol consisted of a 7-d ambulatory

control period, 30 d of 6 ° head-down bed rest, and a

4.5-d ambulatory recovery period (ref. 8). After an inten-

sive 3-too familiarization period before BR, 12 subjects

(section 1: 4 NOE, 4 ITE, and 4 IKE) entered the Human

Research Facility at Ames Research Center and were

tested in July and August 1986. One week later the
remaining seven subjects (section 2:1 NOE, 3 ITE,

and 3 IKE) were tested in August and September 1986.

All testing, showering, and excretory functions were

performed with the subjects in the head-down and the

exercise testing in the horizontal postition. Mean (N = 19)

daily caloric intake was 2,813 + 47 kcaYday and fluids

were consumed ad libitum (ref. 10).

Exercise training- The exercise-training groups worked

for two 30-rain periods/d (a.m. and p.m.) for 5 d/wk
during BR. Peak _'O 2 was measured weekly in all

groups with lower extremity cycle ergometer exercise
(Quinton Imaging/Ergometer Table, model 846T, Seattle,

WA 98121). The force was applied at the instep of the

foot; heels were supported so the subjects could relax the

anterior thigh muscles between the active, alternating

muscular contractions..ITE training was 2-min work
bouts at 40% of peak VO 2 alternating with 2-rain bouts
at 60%, 70%, 80%, and 90% peak VO 2 (ref. 8). IKE

training was performed on a LIDO computer-conu'olled

ergometer (Loredan Biomedical Inc., Davis, CA 95617).

It consisted of l0 bouts of 5 repetitions/10 s of peak knee

flexion and extension force (from 90 ° to 100 ° range of

motion) at a speed of 100°/s followed by 50 sec rest, for a

total time of 15 rain with each leg and thigh (including

2.5 min warm-up and 2.5 min cool-down periods).

Resting energy utilization in the NOE group was
3.6 + 0.2 mlO2.rnin -1.kg -1 (83 kcal/hr); resting

plus exercise energy cost in the IKE group was
8.9 _+0.5 mlO2.min -l.kg -1 (214 kcaYhr), and

18.8 + 1.6 mlO2.min-l.kg -l (446 kcal/hr) for the

ITE training regimen. Leg total sa'ength (peak torque)

was 645 _+38 N-m (NOE), 714 +42 N-m (ITE), and

704 _+38 N-m (IKE). Calculated peak torque for the
isotonic exercise was 112 _+9 N-m.

Ultrasonography- Muscle thicknesses from the posterior

leg group (medial soleus, flexor hallucis longus, tibialis

posterior) and the anterior thigh group (rectus femoris,
vastus intermedius) were measured as described previ-

ously (refs. 23, 26, and 27) on control day minus 5
(C - 5), on BR d2, 9, 16, 23, and 29, and on recovery

day +4 (R + 4) with an imaging system (model DS-1,

Diasonics, Inc., Milpitas, CA 95035) equipped with

electronic calipers and a 7.5 MHz duplex probe for linear
measurement of muscle thickness. All images and data

were recorded on magnetic tape. The subjects were tested

6 ° head-down in standardized positions: supine for

measurement of anterior thigh muscles and prone with

the feet extending unsupported beyond the end of the

guerney, for measurement of the posterior leg muscles.

Measurement (probe) locations were marked with

indelible pen at two skin sites: 1/3 of the distance from

the superior margin of the patella to the anterior-superior

iliac spine (about 15 cm above the patella) for measure-
ment of the rectus femoris and vastus intermedius

muscles separately; and about 1/3 the distance between
the lateral maleolus and the head of the fibula, corre-

sponding to cross-sections E/S 98 to E/S 99 (ref. 5) for
measurement of the soleus + flexor hallucis longus
muscles combined because their individual fascial

boundaries often were poorly defined. Their thickness
was measured by triangulation, as the perpendicular

distance from the medial surface of the soleus (fig. 1-

upper cross) to the midpoint of a line (approximated by
the interosseous membrane) between the sharp echos

from the tibia and fibula at a site just inferior to the distal

edge of the gastrocnemius (fig. l-lower cross). Ultrasonic
gel was applied generously to locate the probe at least

1 mm above the skin surface to avoid compression, which

would modify the measurement.

Muscle thickness data were the mean of 3--4 echos taken

at precisely the same site by aligning reference lines on

the probe, held perpendicular to the long axis of the
muscle, with two crossed reference lines centered on the

measurement site. Repeated measurements were repro-

ducible to +7%. Axiai displacement of the probe by
1-2 cm could increase the error to +10% or more

depending on the contour of the muscle.

Muscle thickness measurements excluded skin and

subcutaneous tissues. The fascial planes separating

muscle from subcutaneous tissues could be easily

discerned, except with the (S + FHL + TP) group.
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Ftgure 1. Ultrasound image of the (S + FHL + TP) posterior leg muscle group from subject BEL illustratingpoints for

thickness measurement: upper cross is the medial surface of the soleus; lower cross is the midpoint of a line between the

sharp echos from the tibia (lower t_ght)and fibula (lower left). The distance between crosses (thickness) is 4.35 cm.

Magnetic resonance imaging (MRD- These images

were taken at the University of California-San Francisco

Radiology Imaging Laboratory on control day -3 (C - 3)

and on recovery d +3 (R + 3). The subjects were

Iransported by limousine and tested in a reclining
position. The legs of the 19 men were scanned in a

Diasonics MT/S (Toshiba America MRI, Inc., South

San Francisco, CA 94080) imager with a field strength of

0.35 Tesla. The imaging was performed in a quadrature

detection head coil that gave an in-plane resolution of
0.95 X 0.95 mm and a ].0 cm slice thickness. Since the

imager had a field of view of only 20 cm the leg it was
imaged sequentially in three 20-cm segments; i.e.,

60 cross-sectional image slices at l-era intervals were

taken on one leg starting from the ankle. The leg was

translated 18 cm for each segment of images. The foot of
the subject was taped to a lucite leg rest (that facilitated

the 18-cm translations) marked to provide reproducible

positioning. Separations between the centers of four oil-

filled lucite tubes, built into the base of the leg-foot rest,

indicated any geometrical changes in imaging conditions.
The distances between centers of each of the four tubes

for the 20 sections in both segments 1 and 2 are presented
in table 1; range of distance errors was +3.74% to

-3.17%. The standard testing mode was a spin echo

image with a time to recovery OR) of 1.0 s and a time to
echo (TE) of 30 ms. Each of the 2,280 cross-sectional

slices was enlarged and filtered to provide a modified

image for computer analysis of its area (fig-2, left
column); then the areas were combined to form a three-

dimensional shaded surface display where locations of the

light source and observer can be varied (fig-2, right
column).
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Table I. Mean (±SE) distancesinpixelunitsbetween centersofthefouroil-filledcalibrationtubesinlegsegments I

and 2:pre (C- 5)and post(R + 4)bed restdataforsubjectBEL.

Tubes Tubes Tubes Tubes

I-2 2-3 3---4 4--I

Segment I

Segment 2

Segment 1

Segment 2

%

%

Ire bed rest (C - 5)

93.49 +- 1.57 63.62 + 1.08 52.92 -+ 0.15 209.80 _+0.52

74.94 + 1.15 79.78 _+ 1.10 52.62 + 0.21 207.14 +_0.30

Post bed rest (R + 4)

90.52 ± 1.24 66.00 + 1.02 53.04 ± 0.21 209.42 ± 0.29

76.89 +_ 1.29 78.53 +_1.08 52.63 _+0.19 207.94 _ 0.35

-3.17 3.74 0.23 -0.18
2.60 -1.57 0.02 0.37

The first step in the computer analysis was to use an

edge-detection program to outline the total area that

contained all structures except subcutaneous fat. Then
areas of the tibia and fibula were outlined and subtracted

from the total area. Image quality was not sufficient to

delineate the boundaries for the soleus and gastrocnemius

muscles in the second section of most subjects legs, so the

posterior leg muscles (lateral and medial gastrocnemius,

soleus, flexor digitorum longus, tibialis posterior, and

flexor hallucis longus) and their connecting interosseous

membranes were used instead. The computer edge-

detection program was employed, with manual inter-

vention at obscure points, to outline the border and
measure the area of this muscle group for each of the

60 sections. For example, the areas for each section (no. 7
to 34) and cumulative areas for subject BEL's posterior

muscle group pre- and post-BR are presented in figure 3.

To illustrate a typical analysis, the soleus and
gastrocnemius muscles from subject BEL were traced

manually. The image quality of his cross-sectional slices

was sufficient to allow delineation of the soleus pre-BR in

segment I at about 11 cm above the ankle (fig. 2, lower

left), the soleus plus the distal heads of the gastrocnemius
pre-BR in segment 2 at about 22 cm above the ankle

(fig. 2, middle left), and only the proximal two heads of

the gastrocnemius pre-BR in segment 3 at about 42 cm

above the ankle (fig. 2, upper left). The image processing

method utilized the determination of muscle edges, which

is a more accurate procedure than using relaxation time

and pixel intensity to characterize muscle (ref. 15). But, it

has the drawback of being labor intensive.

The data were analyzed with the appropriate paired or

unpaired t-tests (Hewlett-Packard HP-65 Stat-Pac), and

linear regression (ref. 6). The null hypothesis was rejected
when P < 0.05 for the t-tests and P < 0.02 for linear

regressions. Non-significant differences were NS.

Figure 2. Cress-sectional MR images (left column) and posterior surface reconstruction views (right column) of the left leg

of subject BEL.

Lower panel - left image: pre-BR so/eus in segment I at 11 cm above the ankle; right view: post-BR tendon of insertion

of the triceps surae.

Middle panel - left image: pre-BR soleus and the medial and lateral heads of the gastrocnemius in segment 2 (22 cm);

right view:,pre-BR medial and lateral heads of the gastrocnemius. The soleus is hidden.

Upper panel - left image: pre-BR proximal medial and lateral heads of the gastrocnemius in segment 3 (42 cm); right

view: post-BR heads of the gastrocnemius only at this level behind the knee. The four circles are the oil-filled tubes.

88



3

4

I * * * I I * * i J i I I I I I I I I t I

0 1 2 3 4 5

OF
I

2

4_

sL
I I t I I ! I t I i I I ! I _ i I i i i I

0 1 2 3 4 5

llllllalllllllllllall

0 1 2 3 4 5
I I a i I i i i I I i I I i I g I i a I I

0 1 2 3 4 5

2

IIJ*l*lll*lllllll*Jil

0 1 2 3 4 5
I_ lltJ J I Ill t Ill * Ill | I

0 1 2 3 4 5

89



32

3O
28

_2e
24

dS

g22

-e16
m

o

I- 12_
10

8

Pro-bed rest (C - 5)

, , , , • , ,

10 14 18 22 26 30 34
Section number

Figure 3. Total area of the posterior leg muscle group pre-

and post-BR for subject BE/_

Results

Ultrasound- Mean (_'kSE) muscle thicknesses for

(S + FHL + TP), rectus femoris (RF), and vastus inter-

mcdius (VI) in the ambulatory control period (C - 5),

wccldy during BR (BR 2 to BR 29), and during recovery
(R + 4) are presented in figure 4, and percent changes
from C - 5 in figure 5. The absolute and changes in
(S + FHL + TP) thicknesses (figs. 4 and 5, upper panels)
decreased (P < 0.05) in the NOE (by 4.2%) and ITE (by
5.0%) groups by BR 2 and continued to decline thereafter
in all groups. The slopes of these posterior leg muscle

groups from BR 2 to BR 29 were significantly different
(P < 0.05) from zero, but not from each other. The C - 5
to BR 29 decreases were: NOE from 4.49 4. 0.11 cm to

3.98 4-0.10 cm, respectively (= -l 1.4%, P < 0.05); ITE
from 4.14 -4-_0.18 cm to 3.61 4- 0.11 cm (= -12.4%,

P < 0.05), and IKE from 4.13 _+0.12 cm to

3.75 4- 0.10 cm, respectively (= -9.0%, P < 0.05).

Percent changes in muscle thicknesses in all exercise

groups did not return to control levels by R + 4 (fig. 5).

Thus, neither ITE nor IKE training influenced the rate or
magnitude of the decrease in (S + FHL + TP) muscle
thicknesses.

Rectus femoris thickness (figs. 4 and 5, middle panels)
was unchanged in the three groups from C - 5 to BR 2
and continued unchanged in the two exercise groups
throughout BR and recovery. Rectus femoris thickness
decreased significantly from C - 5 to BR 29 only in the
NOE group from 2.06 4. 0.18 cm to 1.86 + 0.19 cm
(= -9.8%, P < 0.05). Percent changes in (RF) thicknesses
were unchanged in all groups on R + 4; those for the ITE
and IKE groups were unchanged from the C - 5 level, and
that for the NOE group did not even show a tendency to
return(fig.5).

The (VI) thickness (figs. 4 and 5, lower panels) responded

differently than the (S + FHL + TP) and (RF) muscles; it

was unchanged in the two exercise groups from C - 5 to

BR 2, and decreased significantly by 6.2% in the NOE.

VI thickness was unchanged during BR from C - 5

only in the ITE group; and it decreased significantly

in the other groups: NOE from 1.71 4. 0.18 cm to

1.41 _+0.10 cm at BR 23 (= -16.1%, P < 0.05); and IKE

from 1.96 4- 0.25 cm to 1.71 4- 0.21 cm at BR 29

(= -12.2%, P < 0.05). Neither NOE nor IKE groups'

(VI) thicknesses returned to control levels during

recovery. Only ITE training maintained (VI) thickness

at the control level during BR and recovery.
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Figure 4. Mean (+_SE) ultrasonic thickness of the (soleus +

flexor hal/ucis Iongus + tibia/is posterior), rectus femoris,

and vastus intermedius muscles during control, BR, and

recovery periods for the three test groups. °P < 0.05 from

corresponding C- 5 value.
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Figure 5. Mean (J:SE)percent changes in ultrasonic

thicknesses of the (soleus + flexor hallucis Iongus + tibialis
posterior), rectus femoris, and vastus intermedius muscles

during control, BR, and recovery periods for the three test

groups. *P < 0.05 from corresponding C- 5 value.

Imaging- Mean (4-SE) total muscle volumes decreased
significantly in all groups after BR: NOE -6.3 _+0.8%

(P < 0.05); ITE -4.3 4- 1.6% (P < 0.05); and IKE

-7.7 + 1.6% (P < 0.05) (table 2). Only one ITE subject

had an apparent increase (NS) in his muscle volume.

There were no significant differences in the decreased

volumes between groups; i.e., neither ITE nor IKE

training influenced the decreased volumes of this

posterior leg muscle group.

Linear regression of percent changes in posterior leg

muscle group thicknesses, measured by ulwasonography

(C - 6 to R + 3), and volume measured by MRI (C - 3 to

R + 3) indicated an overall correlation coefficient of 0.35

(NS) (fig. 6); group coefficients were: NOE r = 0.63
(NS), ITE r = 0.79 (P < 0.05), and IKE r = 0.27 (NS).

Summary of Results

Ultrasound- 1. The posterior leg muscle group

thicknesses decreased significantly by 9%-12% during

BR in all three test groups. 2. Rectus femoris (anterior

thigh) muscle thicknesses were unchanged during BR in

the two exercise groups, but decreased significantly by

10% in the NOE group. 3. Vastus intermedius (anterior

thigh) muscle thickness was unchanged during BR in the

ITE group, but decreased significantly by 12%-16% in

the NOE and IKE groups.

Magnetic resommce imaging- 4. Total volumes of the

posterior leg muscle group decreased similarly and

significantly by 4% to 8% in all three test groups.
5. Correlation coefficients between ultrasonic thickness

and MR/volume of their respective posterior leg muscle

groups were: NOE r = 0.63 (NS), ITE r = 0.79 (P < 0.05),
and IKE r = 0.27 (NS).

91



Table 2. Volumes (pixel units) of the posterior leg muscle group in the ambulatory control (C - 3) and recovery
(R + 3) periods.

C-3 R+3 %

No exercise (N = 5)

X 536478 502190 --6.3*

+_SE 40156 35834 0.8

Isotonic exercise (N = 7)

X 538541 516688 -4.3*

:LSE 36942 40456 1.6

Isokinetic exercise (N = 7)

X 574858 530892 -7.7*

+_SE 15335 17336 1.6

All Subjects (N = 19)

X -6.1"

_-kSE 0.9
, i

*P < 0.05 from zero.
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Figure 6. Regression of percent changes (C- 6 to R + 4)

in posterior leg muscle groups thicknesses (ultra-

sonography) on percent changes (C- 3 to R + 3) in

posterior leg muscle group volumes (MR/) for the three

test groups. Dash line is line of identity; solid line is

regression line for ITE group (r = O.79, P < 0.05).

Discussion

Ultrasound-- Thicknesses of the antigravity posterior leg

muscle group (S + FIlL + TP) was not affected by either

exercise training regimen. Atrophy of this muscle group

would be expected withoutleg exercise training because

maintenance of upright posture was no longer required.

Also, the knee flexion and extension exercise protocols

did not require intensive use of those three muscles which

act generally to plantarflex the great toe and foot (ref. 20).
On the other hand (RF) thickness in the two exercise

groups was maintained at control levels throughout BR
while that for the NOE group atrophied similarly in time

and magnitude to that of the (S + FHL + TP) muscle

group. Maintenance of (RF) thickness with both leg

exercise regimens would be expected since its action is to

extend the leg and flex the thigh. The ITE training (RF)

thickness tended to be greater than that for IKE training

suggesting a more positive training effect with the former.

But the thickness differences between the NOE regimen

and the two exercise regimen's levels could also be

considered as a positive training response.

The (VI) thickness responses are even more interesting.

Why were they maintained at control levels throughout
BR in the ITE group, while IKE group thicknesses

decreased much like those in the NOE? Unlike the (RF),

the (VI) does not originate on the pelvis so it would not

act to flex the thigh. Its only action (with the RF) would

be to extend the leg, which occurs with the push (down-

ward) phase of the leg during cycling. Apparently per-
formance of maximal isokinetic knee extension did not

stimulate the (VI) sufficiently. Conversely, the period of

maximal muscular tension during cycling at the higher
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loads would tend to be intermittent and alternating

between the lower extremities, assuming there would be

no accompanying isometric tension during the supposedly
alternating isotonic contractions. But results from surface

electromyography, on thigh and leg muscles during lower

extremity cycling in the sitting position, indicate sig-

nificam (50% of maximal) EMG activity in the vastus

medialis and vastus iateralis muscles (which have origins,

insertions, and action similar to the V1) during the push-
phase of the cycling motion (ref. 4). At the same time the

(RF) was stimulated to only 10% of its maximal activity.

These EMG results, while suggestive, may not be directly
applicable to lower extremity muscular activity where the

heels are supported and the limb motion is lateral rather

than vertical. Thus, the ITE regimen appeared to stress

the (VI) more than the IKE regimen resulting in better
maintenance of muscle thickness. Part of the increased

stress may have come from the tendency to hold the legs

in the horizontal position, although the subjects were

trained to exercise with the legs relaxed. Performance of
so-called dynamic (isotonic) exercise at 80% and 90% of

peak "qO2 seems torequire(induce)maximal isometric

contractionforceofnearlyeverymuscleinthebody,

similar with that required during the maximal IKE

regimen. Perhaps the postulated isometric component

during ITE could explain some of the difference in (VI)
thickness responses.

The similar significant decreases of 4.3% to 7.7% in

the MRI volumes of the posterior leg group muscles
coincided with the similar significant decreases of 9.0%
to 12A% in thickness. The site selected for the latter

measurement would not necessarily be representative of

the muscle's total volume, hence one possible reason for

the discrepancy in the absolute percent changes.
Responses of those magnitudes have been observed

following limb casting in normal, ambulatory subjects.
Leg casting for about 19 wk resulted in a 12% reduction

in total leg volume relative to the non-casted control leg
(ref. 22). However, the reduction in muscle cross-

sectional area was much greater as indicated by decreases

in areas of type I (slow twitch) fibers by 46% and type II

(fast twitch) fibers by 37%. I-Iiggrnark and Eriksson
(ref. 11) measured cross-sectional areas of leg muscles

after six wk of casting following Achilles tendon rupture:
calf muscle area was reduced by 11%, but soleus and

gastrocnemius area was reduced by only 23%, and mean
soleus fiber area was decreased by 25%.

In addition to probable loss of muscle contractile protein
and fiber area (ref. 16), part of BR induced lower

extremity muscular atrophy (including thickness and

volume) can be attributed to muscle dehydration from
general body water loss (hypohydration) which begins

with a diuresis during the first 24 hr after assumption of

the recumbent body position (refs. 9, 10, and 18). There is

depletion of both cellular volume (CV) and extracellular

volume (ECV), but intensive ITE training can maintain

plasma volume (refs. 10 and 24) at control levels while
interstitial and ECV decreases by 14% (ref. 24).

The significant decreases in muscle thicknesses during
the first 2 d of BR, i.e., (S + FHL + TP) with NOE and

ITE, and the (VI) in the NOE group, would seem to

reflect mainly fluid loss rather than loss of contractile

protein. The continued decline of thicknesses from BR 2

to BR 29, particularly in the NOE group and in all groups

for (S + FHL + TP), appears to be due to increasing loss

of contractile protein (ref. 17) since the negative fluid

balance virtually ceases after 48 hr (ref. 10) while the

negative nitrogen balance continues.

Dudley et al. (ref. 3) reported decreases in cross-sectional

areas of vastus lateralis fast-twitch (by 17%) and of slow-

twitch (by 11%) muscle fibers after 30 d of 6° head-down
BR which were similar to our NOE decreases of 12%

(RF') and 20% Cq'I). These fiber area decreases were
associated with an 8% decrement of the total cross-

sectional area of unspecified thigh muscle, determined by

computed tomographic analysis, which generally agrees
with our 4.3-7.7% decrease in MRI volumes of the

posterior leg muscle group where reduction in thickness

and volume appears to accompany general body hYlX>-

hydration. The rapid restoration of (S + FHL + TP)

muscle thicknesses in all _oups during recovery period

supports this hypohydration hypothesis.

There were some deviations in the recovery process.

While the NOE group's_RF) thickness continued to

decline slowly throughout BR there was no restoration by

R + 4. Similarly, the (VI) thicknesses in the NOE and

IKE groups remained depressed during recovery.
Apparently the mechanism of actively trained (thigh)

muscle recovery is different than non-actively trained

(leg) muscle recovery, but it does not appear to be solely
a function of fluid replacement. Perhaps when contractile

protein content is lost during deconditioning, restoration

is not apparent by the fourth recovery day.

The rateof thicknessdecreasesof the(S+ FHL + TP)

musclegroup (-9.0% to-12.4%) was abouttwicetothat

occurringwithcalfgirthdecreasesinthethreeSkylabIV

crewmen who exercise-trainedfor90 min/d duringflight.

Two crewmen lost about 2% of their calf girths on the

first day (probably water), followed by progressive

declines of 3.6% for the three crewmen by flight d25-27
and of 6.3% by d82-83. There was a steep increase in

girth during post-flight recovery: to 2.6% below preflight

levels on d 4 and only 1.0% below by recovery d8-11.

93



Weconclude that intensive isotonic (dynamic) exercise

training is as effective as intensive isokinetic exercise

training for maintaining thickness of some anterior thigh

muscles but not posterior leg muscles, during prolonged
bed rest.
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BONE ANDCALCIUM

Bone Density and Calcium Metabolism

S. B. Amaud

Decreased os calcis bone density has been measured in

healthy subjects (ref. 28) after 6 wk of BR, and decreased

lumbar vertebral density of patients treated for prolapsed
intervertebral discs was found after 4 wk ofBR (ref. 15).

Recently LeBlanc et al. reported no change in density

(dual photon absorptiometry) of the lumbar spine of
healthy subjects at bed rest in the horizontal position for
5 wk (ref. 17). There are few data on alterations in bone

density from the effects of bed rest in the --6 ° head-down

position, a more appropriate model for spaceflight with

more rapid onset of fluid shifts than those occurring in the
horizontal position (ref. 9).

The early metabolic changes in calcium and skeletal

metabolism, which precede reduced bone mineralization,
in tissue obtained from the iliac crest after 2 wk of

horizontal bed rest (ref. 14) have yet to be identified.

Calcium exchange increases during bed rest (ref. 19) and

increases in calcium and hydroxyproline excretion in the

urine become significant after 4 wk of bed rest (ref. 7).

Calcium loss, presumed to result from increased bone

resorption, increases to 150-200 mg/d and results in a

negative calcium balance that does not seem to be

counteracted by enhanced intestinal calcium absorption
(ref. 1). Direct estimates of soft tissue calcium content,

part of the exchangeable pool of total body calcium, have
not been made.

Until the discovery of a non-collagenous protein in bone

(ref. 13) and its identity with a peptide in the circulation

(ref. 25), there was no practical means of evaluating bone

cell activity without a bone biopsy. Changes in bone

alkaline phosphatase, an enzyme synthesized by the

osteoblast, are difficult to interpret because this circu-

lating enzyme can originate in the liver and intestine, as

well as in bone fief. 24). Bone Gla protein (osteocalcin) is

a unique product of the osteoblast (ref. 2); circulating

levels reflect synthesis of new protein (ref. 26), correlate

well with morphologic measurements of bone formation

(ref. 19), and can reflect responses to treatment in patients

with metabolic bone disease as early as 2 wk after

initiation of therapy (ref. 30). The effect of bed rest and

inactivity on serum osteocalcin, an indirect measure of

osteoblastic activity, has not been determined.

The role of the calcium-regulating hormones in the loss

of calcium and the demineralizing effect of acute disuse

osteoporosis remains controversial. Parathyroid hormone

seems to play a role in the local resorption that occurs

following immobilization by plaster casts (ref. 5).

Decreased serum parathyroid hormone and urinary cyclic

AMP (an index of its end-organ responses) in patients

with paraplegia (ref. 29), suggest appropriate respon-
siveness of the hormone to demineralization. Although

data from balance studies indicate reduced intestinal

calcium absorption in subjects after 5 wk of bed rest,

these findings have not been related to changes in the

circulating 1,25-dihydroxyvitamin D, the vitamin D

hormone responsible for intestinal calcium absorption
(ref. 13).

Methods

Density of the lumbar spine (LI-L4), determined by dual

photon absorptiometry (Lunar instrument), and density of

the mid-radius of the non-dominant arm (Norland

Cameron densitometer), were measured on control

day - 1 and R + 2. Twenty-four-hour urine specimens

were collected on control day - 5 and on BR days 4

and 26. Blood samples were obtained after completion of

the three 24-hour urine collections, and sublingual cells

were collected the mornings of blood sampling.

Total serum and urine calcium concentrations were

measured either by atomic absorption spectrometry or by

a fluorescent calcium binding protein and EGTA tiwation

method (Precision Instruments, Inc.). Ionized calcium and

pH were determined on fresh serum injected into micro-

fuge tubes, capped, allowed to clot for 2 hr at 25°C,

centrifuged, removed with tuberculin syringes anaerobi-

cally, and injected into the ionized calcium analyzer

(Radiometer, model ICA-1). Phosphorus was measured

by a modified Fiske and Subbarow method (Technicon

Autoanalyzer), creatinine by a colorimetric method

(Beckman Creatanalyzer), and total protein with the

Bradford assay (ref. 4). Osteocalcin was determined with
two radioimmunoassays, both of which use an antibody

to bovine protein: a commercially available kit
(Immunonuclear, Inc.) which uses bovine standard and

tracer, and an assay developed at Ames Research Center

using standard and tracer from non-human primates
which are more similar in structure to human than bovine

peptide (refs. 11 and 23). Parathyroid hormone was

measured in the laboratory of Dr. R. Marcus (at Stanford

University) with a mid-region assay (ref. 1) and

1,25-dihydroxyvitamin D (at Ames Research Center)

with the radioreceptor assay (ref. 27). Analyses for a

stone risk profile were carried out by Mission Pharmacal,

Dallas, "IX, and the laboratory of Dr. Pak (ref. 22).

Urinary hydroxyproline was measured by Bioseience

Laboratories (ref. 10), and urinary cyclic AMP by radio-
immunoassay 0mmunonuclear, Inc.). Measurements of

the concentrations of calcium, phosphorus, magnesium,



sodium, potassium, and chloride in sublingual cells were

determined with a method developed by Dr. B. Silver

(Spectroscan, Inc.). The cells, scraped from the sublingual

region of the mouth after a distilled water rinse, were

smeared directly onto a low background carbon slide with

an applicator stick and fixed immediately by flooding

with a standard cytology fixative (carbowax and alcohol).
The intracellular ion concentrations of individual cells

were measured by X-ray dispersive analysis selected by

electron microscopy. Results are expressed in EXA units:

(peak)/(background ratio of X-ray intensity)
EXA = unit cell volume (800 microns)

The minimum number of cells (3-10) required for three

reproducible values in each subject were analyzed.

Statistical analyses of variance were used to compare data

from each group on BR days 4 and 26. The paired t-test
was used to evaluate the effects of exercise in the same

individuals. Relationships between variables measured

were determined primarily by regression analysis of the

changes in the variables in the entire group of 19 subjects.

Neuman-Keuls and Bonferroni multiple comparison

t-tests were used to compare group differences and the

changes during bed rest, respectively, of stone risk profile
and vitamin D hormone data (SPSS software).

Results

Bone density- There were no statistically significant

changes in mean bone densities in the lumbar (L 2--4)
vertebrae or in the mid-radius of the three test groups

immediately after bed rest (table I). There was a tendency
for lumbar densities to increase and for radial densities to

decrease. The change in bone density for the entire group

was not related to changes in osteocalcin, parathyroid

hormone, 1,25-dihydroxyvitamin D, total blood volume,

testosterone, cortisol, urinary calcium, or hydroxyproline.

Nine subjects weighing more than 78 kg showed a mean

(change in bone density of-0.56 _+4.1, the same change

as 10 subjects weighing less than 78 kg (1.66 __4.3);

weight changes for these two groups were -2.16 _+2.3 and

-1.52 +_ 1.9 kg, respectively.

Individual subject lumbar densities (fig. 1) ranged from

-7% (subject 405, isokinetic) to +10% (subject 412,

isokinetic). Both subjects had changes in lumbar densities

beyond the 50th percentile for age-matched normal men.
Lumbar bone density was unrelated to the two subjects'

height, weight, age, surface area, percent body fat, or
serum osteocalcin; but was inversely related to urine

calcium, urine hydroxyproline, serum parathyroid

hormone, and serum cortisol (fig. 1).

Table 1. (Mean +_SD) density of lumbar and radius bones before and after bed

rest for the three groups

Exercise group Ambulatory Recovery %A

Day - 1 Day + 2

Lumbar vertebrae (gm/cm 2)

No exercise 1.130 _+0.079 1.131 + 0.107 +0.1

Isotonic 1.144 + 0.118 1.141 _ 0.115 -0.3

Isokinetic 1.289 + 0.303 1.295 _.+0.242 +0.5

Mid-radius(gm/cm)

No exercise 1.249+ 0.260 1.243+ 0.229 -0.5

Isotonic 1.191+ 0.138 1.184+ 0.114 -0.6

Isokinctic 1.232+ 0.104 1.222+ 0.132 --0.8
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Figure 1. Individual percent changes in lumbar (L 2-4) and

radius densities, and indices of bone resorption and
formation in urine and blood of two isokinetic group

subjects with the greatest increase (412) and decrease

(405) in lumbar density on BR day 27.

Calcium homeostasis- Factors involved in the control of

serum calcium concentration on BR day 4 and BR day 27

are presented in table 2. Total serum calcium and total

protein concentrations were unchanged in all test groups;

while serum ionized calcium was increased (P < 0.01)

only on BR day 27 in the isokinetic and no exercise

groups, and unchanged in the isotonic exercise group.

There were no significant changes in any test groups in

venous pH, serum phosphorus, parathyroid hormone, or

in 1,25-dihydroxyvitamin D (table 2). Serum total

calcium was correlated significantly with total protein

(r = 0.34, P < 0.01, N = 56), but not with parathyroid

hormone or 1,25-dihydroxyvitamin D. However, serum

ionized calcium was correlated negatively (r = -0.69,

P < 0.05) with venous pH (fig. 2).

Mean serum osteocalcin concentrations, measured with

the two procedures, indicated no statistically significant

changes in any test group by BR day 27 (table 3). A

majority of the subjects (13/19 with the IMN assay, and
14/19 with the monkey assay) exhibited an increase (NS)

in osteocalcin on BR day 4. Values from the two assays

were not significantly correlated (r = 0.18, NS, N = 57).

There were no statistically significant changes in urinary

variables (volume, creatinine, calcium, phosphorus,

hydroxyproline, 3,5 cyclic AMP, prostaglandin E2,

creatinine clearance, percent tubular reabsorpdon of P,

or the calcium/creatinine ratio) on BR day 4 or day 27

(table 4). Urinary hydroxyproline was not correlated

significantly with urinary calcium (r = 0.34, NS).

Cellular electrolytes- There were significant increases in

sublingual cell calcium (P < 0.05), phosphorus (P < 0.05),
and potassium (P < 0.01) only on BR day 28, and only in

the NOE group (table 5). There were no differences in

cellular magnesium, sodium, or chloride in any group

during BR.

Urinary stone risk- Urinary stone risk factors were

measured on 24 hr urine samples on ambulatory

day C - 5, and BR days 8 and 28 (tables 6 and 7).

Ammonium ion production was decreased (P < 0.05) in

the two exercise groups in the ambulatory and BR 28

samples (table 6). In the ambulatory period the ITE

group had the lowest level (P < 0.05) of citrate excretion

(499 + 249 rag) compared with 769 + 155 mg with the

NOE and 615 + 57 mg with the IKE group: BR day 28
IKE citrate was increased (P < 0.05). All were well

above the lower limit of the normal range of 320 mg/d.
Potassium excretion increased (P < 0.05) in all three

groups on BR day 8 and returned to ambulatory control
levels by BR day 28. On BR day 8 oxalate excretion

decreased (P < 0.05) in the ITE groups, and sulfate

excretion increased (P < 0.01) in the IKE group. Uric acid

excretion decreased (P < 0.05) in the ITE group on BR
days 8 and 28. Sodium excretion decreased (P < 0.001)

only in the ITE group on BR day 28. Only urinary

volumes, pH, calcium, phosphorus, magnesium, and
ereatinine were not different from control levels or

between groups during BR (table 6).

C.oZ..
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Table 2. Mean (±SD) serum variables associated with serum calcium status for the three groups

Exercise group Ambulatory Bed rest
Day- 1 Day 4 Day 27

Total calcium (mg/dl)
No exercise

Isotonic

Isokinetac

Total protein (g/dl)
No exercise

Isotomc

Isokinetic

Ionized calcium (mg/dl)
No exercise

Isotonic

Isokinetic

Venus pH (units)
No exercise

Isotonic

Isoldnefic

Phosphorus (mg/dl)
No exercise

Isotomc

Isokinetic

Parathyroid hormone (pg/ml)
No exercise

Isotonic

Isokinetic

1,25-Dihydroxyvitamin D (pg/ml)
No exercise

Isotonic

Isokinetic

9.0±0.34 9.1±0.18 9.3±0.16

9.5±0.28 9.4±0.30 9.6±0.41
9.4±0.43 9.2±0.35 9.2±0.32

6.2±0.22 6.3±0.69 6.9±0.59

6.8±1.10 6.8±0.71 6.6±0.57

7.0±0.53 6.9±0.69 7.0±0.45

4.49±0.11 4.78±0.22 4.95±0.14"

4.66±0.36 4.82±0.15 4.98±0.10

4.58±0.26 4.71±0.17 4.88±0.14"

7.48±0.03 7.45±0._ 7.45±0.07

7.47±0._ 7.45±0._ 7.43±0._

7A6±0.03 7.46±0._ 7._ ±0._

2.9±0.26 2.9±0.16 2.9±0.16

2.9±0.34 3.2±0.54 3.1±0.63

2.6±0.45 2.7±0.41 2.8±0._

33±9 31± 13 27±8

26± 12 27± 16 22± 11

27 + 8 27 ± 15 25 ± 12

50±16 34±6 34±11

_±12 38±20 31±11

36±13 33±11 33±10

*P < 0.01 from ambulatory.
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Figure 2. Regression of serum ionized calcium on venous

pH with data from the three groups on BR days 4 and 27

(r=-0.69, P < O.05).

Relative supersaturation or urinary variables and three

supersaturation ratios are presented in table 7. The ITE

group exhibited significant ('P < 0.05) increases in

brushite (the stable phase of calcium phosphate in
normal acid urine) on BR days 8 and 28, and a decrease

(P < 0.01) in undissociated uric acid on BR day 8. Similar

responses occurred in the IKE group on BR day 8:

increased brushite (P < 0.05) and decreased (P < 0.05)
normal and undissociated uric acid. Calcium oxalate,

tuonosodium urate, and struvite were not different from

control levels or between groups during BR (table 7).

Table3. Mean (.'kSD)serum osteocalcinconcentrationsforthethreegroups

Exercisegroup Ambulatory Bed rest

Day - 1 Day 4 Day 27

Osteocalcin (ng/ml) (IMN - bovine standard)
No exercise

Isotonic

Isokinetic

Osteocalcin (ng/ml) (NASA - monkey standard)
No exercise

Isotonic

Isokinetic

2.84 + 0.82 3.38 + 0.60 2.97 -+ 1.0

3.58 + 0.77 3.45 + 0.68 3.34 ____1.2

3.28 + 1.20 3.34 + 0.70 3.10 + 1.4

7.12 + 1.13 8.52 + 2.71 9.20-+ 1.29

7.12 + 1.20 7.21 -+ 1.57 8.32-+ 1.73

8.57 + 3.89 9.21 + 3.97 8.73 -+4.00
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Table 4. Mean (+_SD) 24-hour urinary variables for the three groups

Exercise group Ambulatory Bed rest

Day - 1 Day 4 Day 27

Volume (ml/24 h)
No exercise

Isotonic

Isokinetic

Creatinine (mg/24 h)
No exercise

Isotonic

Isokinetic

Calcium (mg/24 h)
No exercise

Isotomc

Isokinetic

Phosphorus (rag/24 h)
No exercise

Isotonic

Isokinetic

Hydroxyproline (mg/24 h)
No exercise

Isotonic

Isokinetic

3'5'-Cyclic adenosine monophosphate (_tg/24 h)
No exercise

Isotonic

Isokinetic

Prostaglandin E2 (btg/24 h)
No exercise

Isotonic

Isokinetic

Creatinine clearance (ml/min/1.73 m 2)
No exercise

Isotonic

Isokinetic

Phosphorus (% tubular reabsorption)
No exercise

Isotonic

Isokinetic

Calcium/creatinine ratio
No exercise

Isotonic

Isokinetic

2,071 + 521 1,704 + 488 1,801 ± 726

2,420 +__535 1,750 + 911 1,861 4- 591
2,214 4- 669 1,590 4- 586 1,621 4- 723

1,761 -+ 379 1,805 + 244 1,835 4- 322

1,753 + 213 1,817 + 219 1,785 + 303

1,776+ 118 2,008 4-339 1,787__+ 183

217 ± 63 239 ± 76 252 4- 88

239 + 49 300 4- 36 290 ± 17

223 ± 81 293 + 92 227 + 77

877 ____.127" 1,011 ± 268** 911 + 101

1,048 4- 254 1,430 4- 425 815 -+ 127

942 +__233* 1,223 4- 399 906 4- 291

27.6±15.7 20.0±8.2 32.44-11.2

26.7±9.2 27.6±10.8 23.6-+7.7

30.4-+9.7 32.7±15.8 34.0_+10.1

2.07 5:0.50 2.06 ± 1.21 1.80 -+0.80

2.26 -+ 1.50 . 1.35 -+0.83 1.66 _+0.63

2.84 _+ 1.07 1.63 ± 0.64 2.26 4- 0.93

6.41±4 5.904-6 3.83±3

2._4-1 5.44±5 4.644-5

1.81±2 4.46±6 3.38±3

140 ± 25 132 4- 34 120 _+31

120± 16 131 ± 19 121 _+10

129 ± 38 120 + 20 121 _+19

85±4 834-5 85_+5

774-11 77±9 824-7

804-5 79±11 84±2

0.123 0.132 0.137

0.136 0.165 0.162

0.126 0.146 0.127

*N=4,**N=6
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Table 5. Mean (+_SD) sublingual intracellular electrolyte concentrations (EXA units/800 _3)

for the three groups

Exercise group Ambulatory Bed rest

Day - 1 Day 4 Day 28

Calcium

No exercise

Isotonic

Isokinetic

Phosphorus
No exercise

Isotonic
Isokinetic

Magnesium

No exercise

Isotonic

Isokinetic

Potassium

No exercise

Isotonic

Isokinetic

Sodium

No exercise

Isotonic

Isokinetic

Chloride

No exercise

Isotonic

Isokinetic

81 + 14 96 + 22 109 __.15"

69 + 11 75 + 15 81 + 10 "t

77+ 16 75+ 14 69+ 11

1,180 + 109 1,231 + 97 1,577 + 209*

1,123 + 46 1,154 + 66 1,220 + 130

1,153-+84 1,1404" 110 1,1704- 108

775+ 18 790+20 811 + 16

766 + 25 780 + 33 785 + 34

788 4- 38 776 + 33 796 + 26

92 "4"29 141 -+ 98 206 _+60**

95+25 90+11 117+31

93+26 90+40 101 -+24

13+1 14+1 14+1

13+1 14+1 13+1

13+ 1 14+ 1 15+2

26_+4 28_+3 24+4

24+5 27+6 22+4

27:1:6 31 _+7 26_+7

*P < 0.05, **P < 0.01 from ambulatory, tN = 6
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Summary of Results

Bone density- Mean lumbar and radial densities were

unchanged in the three groups during BR. Change in

lumbar vertebrae density in two isoldnetic group subjects

of +7% and -10%, respectively, were associated with

appropriate metabolic and hormonal responses.

Caldum homeostasis- The increase in serum ionized

calcium at the end of BR, accompanied by mild metabolic

acidosis, was not associated with the unchanged serum

total calcium. The decreasing trends (NS) in serum

1,25-dihydroxyvitamin D during BR were most marked

in the NOE group, and least marked in the 1KE group.

CeUular electrolytes- There were significant increases in

sublingual cell calcium, phosphorus, and potassium at the

end of BR only in the NOE group; i.e., the cellular con-

centrations of these three electrolytes were suppressed by

thetwo exerciseregimens.

Urinary stone risk- Significant increases in the relative
supersaturationofbrushite(thestableform ofurinary

calciumphosphate)only inthetwo exercisegroups

duringBR, were not associatedwithconcomitant

increasesinurinaryexcretionofcalciumorphosphorus.

Discussion

Exercise effects-- The only variables that exhibited clear

differences between the no-exercise group and the two

exercise groups were significant increases in some

cellular ion concentrations (calcium, phosphorus,

potassium), suggesting they were suppressed (remained

within ambulatory levels) by the exercise regimens. Since

there were no serum variables that responded differently

in the two exercise groups, the selective maintenance of

plasma volume (A = -1.5%, NS) in the ITE group, and

not in the IKE group (A = -14.7%, P < 0.05), eliminates

hypovolemia as a factor. While it is generally acknowl-

edged that weight-bearing activity (exercise) has a great

effect on bone metabolism and density (ref. 16), there are

no studies that have compared the effects of isotonic and

isoldnetic exercise regimens. And data on the effects of

long-term exercise training on calcium metabolism are

sparse.

Bone density- The lack of significant change in mean

lumbar and radius densities after 27 d of BR agrees with

the findings of others. LeBlanc et al. (ref. 17) also found

no significant change in mean vertebral (L 2-4) density in
six men after 35 d of absolute, horizontal BR; and Vico

et al. (ref. 31) reported no significant change in bone mass
in the iliac crest in 20 men after horizontal BR for 28 d.

No change in os calcis densities have been reported up to
28 d of BR, but mineral losses of 27% to 54% were

reported in the left os calcis of the three men after 30 to
36 wk of BR (ref. 32). Bone mineral content, measured

with dual-photon (153 Cad) absorptiometry, lumbar

(L 2-4) vertebrae in 34 patients (18-.60 yr) hospitalized

for lumbar disc protrusion, decreased by 3.4% after

11--61 d (X = 27 d) of bed rest (ref. 15). Bone mineral

content decreased by 0.9%/wk and recovery was nearly

complete after 4 mo of reambulation. Dual photon

measurements are reproducible to +_2% (ref. 33). Seven

subjects had lumbar density increases above 2%, and six

had density decreases below 2%. Except for the two

isokinetic group subjects, the lumbar densities of the

remaining subjects were within the 95% confidence limits

for this measurement. These variable results raise ques-

tions of the variability of lumbar vertebral mineral content

in normal ambulatory people.

Respective decreased lumbar vertebrae density of 7%,

and increaseddensityof I0%, were associatedwith

appropriateand oppositechangesinurinecalcium,urine

hydroxyproline,serum parathyroidhormone, and serum

cortisol.Serum osteocalcinincreasedinbothsubjects.

Increasedproductionofparathyroidhormone (apotent

activator of osteoclastic bone resorption) to the upper

limit of normal in subject 405, may have accounted for

his loss of lumbar bone density. But stimuli for pro-

duction of parathyroid hormone---hypocalcemia induced

by diet or acidosis, increased catecholamine secretion

(ref. 8), or hytm'cortisalemia---were not present for this

subject when compared with the other five isokinetic

group subjects (except 412). A more likely explanation is

that these two subjects' levels were at the tails of the

normal distribution curve--the subject with decreased

density manifested mainly deconditioning effects, and

the subjects with the increased density manifested mainly

the exercise-training effects. Lack of change in radius
densities could be attributed to extensive use of the arms

during isokinetic exercise for moving the body in bed and

for performance of daily activities. There was no signifi-

cant relationship between change in bone density and

body weight, change in body weight, or diet. Caloric
and calcium intakes were well within recommended

allowances for these men, and additional calories were

provided for the additional exercise energy expenditure.
However, there was a tendency for the subjects weighing

more than 78 kg to lose more weight during BR (2.16 kg)

than those weighing less than 78 kg (1.52 kg): mean

change in bone density was --0.56 for the heavier, and

+1.66 for the lighter subjects. Reduced caloric intake was

one factor in the development of osteoporosis in young

women runners (ref. 20), but it has not been identified as

a factor in the etiology of bed-rest bone demineralization.

Calcium homeostasis- The major alteration in calcium
homeostasis was the increase in serum ionized calcium
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for all subjects (N = 19), from an ambulatory control

level of 4.58 + 0.27 mg/dl to the BR day 27 level of
4.93 _+0.13 mg/di (P < 0.01), which would not have

been caused by either exercise regimen. This hyper-
calcemia was associated with mild metabolic acidosis

(ApH = -0.06 units, p < 0.05) due perhaps to residual

effects of the exercise cardiac output test, coupled with a
mild disturbance in pulmonary ventilation from the head-
down tilt position.

Cellular electrolytes- The most significant finding was

the increase in cellular total calcium, phosphorus, and

potassium only in the no-exercise group implying that the

exercise training regimens depressed these electrolytes.

Most cellular calcium is sequestered inside organelles

(e.g., mitochondria), with relatively smaller amounts

bound to membranes and as the free ion in cytoplasm
(ref. 6). Most cellular calcium emanates from metabolic

process which facilitates cellular exchange. There is more

rapid movement of the exchangeable calcium pool in bed-

rested subjects compared with ambulatory individuals
(refs. 13 and 18). The increased cellular calcium and

phosphorus concentrations are not the result of cell

damage since there was no loss of potassium (ref. 6).

In fact, potassium actually increased to a greater degree

than calcium or phosphorus. Since sublingual cells are
renewed every 3 days, these increased ion concentrations,

while perhaps induced by cephalic fluid shifts at the

beginning of bed rest, persisted thereafter when fluid

shifts were approaching equilibrium. Also, these
increased ion concentrations were not related to the

differential changes in plasma volume in the three groups.

Urinary stone risk- The variety of elements in the urine

that can influence stone formation in this study showed a

different profile from that found in subjects bed-rested in

the horizontal position; primarily with respect to the

amount of calcium excreted. Only five of the 19 subjects,

some from each group, had increased urinary calcium
excretion that approximated that formed in horizontal

bed-rested subjects (ref. 1). It was not possible to identify
factors which could predict this calcium loss.

In spite of the finding of no significant change in urinary

calcium for all subjects, the increased brushite excretion

in the two exercise groups, along with the trend toward

higher pH and lower urine volumes, would tend to favor
stone formation.

The reason for the lack of calciuria and phosphaturia is
unclear. Dietary calcium averaged about 300 rag/d, more

than that consumed by subjects in most horizontal bed

rest studies. Protein intake exceeding 125 gm/d can

amplify calcium loss; protein intake in the present study

averaged 114 grn/d, slightly more than the amount

consumed by horizontally bed-rested subjects. The

intentional lack of rigid dietary control in the present

study was to simulate the dietary regimen of astronauts

prior to and during flight. We were unable to demonstrate

any significant relationship between the various dietary
substances and the amount of calcium in the urine.

Perhaps there is a degree of self-regulation that helps to

maintain calcium homeostasis during prolonged bed rest.
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PERFORMANCE AND MOOD

Performance and Mood-State Parameters

during 30-Day 6 ° Head-Down Bed Rest with

Exercise Training
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Moffett Field, CA 94035-1000

Abstract

DeRoshia CW, Greenleaf JE. Performance and mood-

state parameters during 30-day 6 ° head-down bed rest
with exercise training. Aviat. Space Environ. Med. 1993;

64:0000-0000. In press.

The study was designed to determine if performance and

mood impairments occur in bed-rested subjects, and if

different exercise-training regimens modify of prevent

them. Eighteen normal, healthy men were divided on the

basis of age, peak oxygen uptake, and maximal isometric

knee extension strength into three similar groups: no

exercise (NOE), isotonic exercise (1TE), and isokinetic

exercise (IKE). A 15-min battery of 10 performance tests

and eight mood and two sleep scales were administered

daily during ambulatory control, 30 days of absolute bed

rest (BR), and four days of ambulatory recovery. Per-

formance test proficiency increased (P < 0.05) for all

three groups during BR in 7 of 10 tests and there were no

consistent significant differences between the three

groups. However, during B1L the 1TE group was distin-

guished from the other groups by a decline (P < 0.05) in
the activation moo_ dimension and in two of its constit-

uent scales (motivation and concentration), and by

improvement (P < 0.05) in the trouble-falling-asleep and

psychological-tension scales. Since few deleterious

changes in performance and mood occurred in the three

groups and did not exceed baseine ambulatory levels, we

conclude that mood and performance did not deteriorate

in response to prolonged BR and were not altered by
exercise training. However, the decline in activation

mood scales in the ITE group may reflect overtraining or

excess total workload in this group.

Introduction

Bed-rested individuals are subjected to restricted

mobility, moderate confinement, and isolation, all of

which probably result in reduced proprioceptor and
kinesthetic input (refs. 19 and 28), particularly in

response to the change from an upright to a horizontal

posture (ref. 28). Moderate confinement or restriction

of body movement, in combination with perceptual

deprivation, can result in altered mood states and in
decrements in intellectual and perceptual-motor task

performance in otherwise normal, healthy people
(ref. 28). Moreover, performance of acute physical

exercise can ameliorate psychological stress (ref. 18),

and more extensive physical exercise during 7 days of

perceptual deprivation significantly ameliorated

perceptual impairments (ref. 27).

Subjects bed rested for up to 120 d suffer from asthenia

defined as a loss of strength, energy, motivation and

concentration, with increased fatigability, sleep impair-

ment, and sensitivity to physical or emotional stressors

(refs. 1, 14, 17, 22, and 23). Performance decrements in

controlled scanning (refs. 25 and 26) and productive

thinking (ref. 2) have been reported after the initial

adaptation to B1L but others have found no consistent

performance changes during BR (refs. 19, 20, 23, and 24).

Physical exercise training during BR attenuated, but did

not eliminate, decrements in controlled scanning (ref. 26).

Exercise training during BR has a much greater remedial
effect for counteracting mood and sleep impairment,
relative to non-exercised bed-rested subjects (refs. 1, 19,

22, and 27). Therefore, impairments in performance,

sleep, and mood states observed during BR without

exercise training may be a direct consequence of reduced

hydrostatic pressure, a diminution of the psychologically
beneficial effects of exercise, or the attenuation of

exercise associated stimuli such as proprioceptor
feedback and mechanical forces on muscles and bones.

The overall purpose of this project was to devise lower-

extremity isotonic and isokinetic exercise training

regimens that would maintain maximal oxygen uptake
and muscular strength and endurance, respectively, during

30 days of BR reconditioning. As part of the project,

we wanted to determine if performance and mood
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impairments occur in bed-rested subjects, and if different

exercise-training regimens modify or prevent them.

Methods

Subjects-- Informed consent was obtained from 18 men

(age 36+ 1 yr, ht. 178 +_2 cm, wt. 76.8+ 1.8 kg) selected

from a pool of over 2,000 applicants by means of an

initial telephone interview; a personal interview, a com-

prehensive medical examination, including blood and

urine analysis and a treadmill stress test; and observation

during a preliminary orientation test phase. Members of

the final group were selected on the basis of their motiva-
tion, friendliness, compatibility, and their assessed ability

to adapt to moderate isolation and confinement. The

interview procedure was used in place of standard

personality tests because such tests are generally designed

to select out those with psychopathological traits rather

than to select in those with more optimal personality traits

(ref.10).

Procedure- This study was conducted in the Human

Research Facility (HRF) at Ames Research Center in the

summer of 1986. Details of the protocol have been pub-

lished (ref. 8). The 18 men who particpated were divided,
on the basis of age, peak oxygen uptake, and maximal

isometric knee extension strength, into three similar

groups: no exercise (NOE, N = 5), isotonic exercise (ITE,

N = 7), and isokinetic exercise (IKE, N = 6) training

groups.

The men lived for 41 days in the HRF and ate a con-

trolled, nutritionally adequate normal diet containing
2,678 +-75 kcai/day (NOE), 2,833 + 82 keal/day (IRE),

and 2,890_+ 75 kcal/day (IKE) composed of 20%

protein, 62% carbohydrate, and 18% fat (reL 9). From

3 to 11 weeks (wk) after the orientation test training the

subjects were admitted to the I-IRF for the pre-BR

ambulatory control period (7 d), the -6 ° bead-down BR

period (30 d),and the ambulatory recovery period (4 d).
The men were housed in two-to-four-man rooms with

moveable partitions so they could be isolated at night or

during testing. The photoperiod was 16 hr light:8 hr dark

(lights on at 070Oh). During the ambulatory control

period, the men exercised for 30 min/day sitting on a

cycle ergometer to retard confinement deconditioning.

During BR, the subjects were restricted to absolute head-

down recumbency, except during meals when they were

permitted to prop their heads up on an elbow; as time

permitted, they were allowed to nap during the day, to

freely interact with the staff, investigators, and other

subjects, to engage in personalhobbies, to listen to

personal stereo systems, to read, and to view television

and videocassette movies. No visitors were permitted in

the facility but the men had unlimited outside communi-

cation by means of a single pay telephone, to which they

were transported by gurney.

Exercise training procedure: Lower-extremity IKE

training and peak testing were conducted with the

subjects in the supine body position on an electronic

cycle ergometer (Quinton lmaging/Ergometer Table,
model 846T, Seattle, WA 98121). Isotonic exercise

training was performed for 30 min in the a.m. and 30 rain

in the p.m. for 6 d/wk. Peak oxygen uptake testing was

performed weekly during BR on all subjects.

Lower-extremity IKE training was also performed for

30 rain in the a.m. and 30 min in the p.m. for 6 d/wk

on a LIDO computer-controlled ergometer (Loredan

Biomedical, Inc., Davis, CA 95617). Peak IKE testing

was performed weekly during BR by all subjects (ref. 9).

The design of the two exercise training regimens was to
maximize intensity to have sufficient duration to maintain

peak oxygen uptakein theITE groupand stren_da and
endurance in the IKE group, while minimizing risk of

overtraining and injury (ref. 8). Only three subjects had

symptoms that required alteration of their training

regimens. One ITE subject had the load reduced from

90% to 40% in three consecutive exercise periods because

of calf-muscle strain. Left lower-extremity training was

cancelled for one ITE subject on consecutive training

periods because of muscle pain. One a.m. training session
was cancelled for another ITE subject and the p.m.

session was performed at a lower level than expected

because of gastrointestinal distress.

Performmaee tests- Performance testing was done with

the microcomputer-based Automated Portable Testing

System (APTS, Essex Corp., Orlando, FL 32803), which

consisted of a portable NEC 8201A personal computer,

test software, and an eight-line liquid crystal display and

was selected for portability, reliability, test automation

capability, and utility for short-duration testing (refs. 4

and 13). Ten performance tests fief. 13) (table 1) from the

30 recommended PETER program tests (4) were selected

to evaluate verbal cognitive reasoning (REASON),

encoding (CODSUB), visuo-spatial ability (MANKIN),

pattern comparison (PATRNC), pursuit tracking (ACM),

and short term memory (STERN'B), as well as the motor

function abilities: preferred hand tappping(PhTAP), two-

finger tapping (TFFAP), nonpreferred hand tapping

(NPTAP), and simple reaction time (SREACI').
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Table 1. Performance proficiency and mood-state tests

Performance Tests Duration (sec) Output Metric

Simple Reaction Time (SREACT) 60 or 15 trials
Code Substitution (CODSUB) 75

Pattern Comparison (PATRNC) 75

Sternberg Short Term Memory (STERNB) 75
Air Combat Maneuver Pursuit Tracking (ACM) 120

Two Finger Tapping (TFTAP) I0 (two runs)

Preferred Hand Tapping (PHTAP) 10 (two runs)

Non-preferred Hand Tapping (NPTAP) 10 (two runs)

Manikin Spatial Transformation (MANKIN) 60

Grammatical Reasoning (REASON) 90

Latency (msec)

#Right - #Wrong

#Right - #Wrong

#Right - #Wrong

Score (# of hits)

Speed (# alternate key presses)

Speed (# alternate key presses)

Speed (# alternate key presses)

#Right - #Wrong Log Latency (msec)

#Right-#Wrong

Mood state Tests Test Adjectives

Activation Mood Dimension

Motivation to Perform (MOTIV)

Arousal State (AROUS)

Fatigue Level (FATIG)
Ease of Concentration (CONCN)

Affective Mood Dimension

Psychological Tension (TENSE)

Elation (HAPPY)

Physical Discomfort (PDISC)
Contentedness (PLEAS)

Sleep Quality
Trouble Falling Asleep (SLEEP)

Number of Waking Episodes (WAKE)
Self-Rated Performance

Relative to that on the previous test battery

Mean of Four Scales Below

Bored (0)/Interested (10)

Sleepy (0yAlert (10)
Weary (0)/Energetic (10)

Very low (0)/Very High (10)

Tense (0)/Relaxed (10)

Sad (0)/rIappy(10)
Very high (0)/Very low (10)

Unpleasant (0)/Pleasant (10)

Much worse (0)/Much better (10)

Total episodes (Range 0-6)

Much worse (0)/Much better (10)

The number of trials required for performance test means,
variances, and correlation matrices to stabilize during

training was determined by the methods of Binner
(ref. 3). The five performance tests with error scores

(REASON, CODSUB, MANKIN, PATRNC, STERNB)

were analyzed as net accuracy (table 1). The MANKIN

test responses were also evaluated as log-latency since
this transformation is more reliable than accuracy scores

(ref. 6). However, since no ceiling effects were detected

in accuracy scores (Cochran's homogeneity of variance
test), and no important differences between analyses

done on accuracy or log-latency scores were detected,

MANKIN accuracy scores were used as a measure of

spatial ability.

Mood-state tests-- A visual analog scale (VAS) mood test

was developed independently and incorporated into the

APTS performance software. Visual analog scale mood

tests provide fast and reliable mood assessment (refs. 5

and 15) with a high degree of mood-state resolution and

less chance of subject noncompliance, response

stereotyping, or remembered responses (ref. 15). It

provided 21 levels of mood-state resolution on a lO-cm

scale between the two mood-state adjectives (table 1).

The test included eight mood scales, two sleep questions

extracted from the St. Mary's sleep questionnaire (ref. 7)

to document sleep latency and disturbance, and a measure

of self-rated performance (table 1).

Using the validation procedure of Monk (ref. 15), the

eight mood scales were allocated four each into two

composite major mood dimensions (table 1). The global
"Af-fective Mood Dimension" which included measures

of feelings or affective states incorporated physical
discomfort (PDISC), elation (HAPPY), psychological

tension (TENSE), and contentedness (PLEAS) indices.

The global vigor, or "Activation Mood Dimension" which

incorporated measures of activation states included

energy level (FATIG), arousal state (AROUS), motiva-

tion to perform (MOTIV), and ease of concentration

(CONCN). Except for the physical discomfort scale,
the other seven mood-state scales have been validated
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(ref.5).ThePDISC indicated the degree of physical

uneasiness or the extent of mild aches and pains which

are common at the onset of bed rest (refs. 2, 14, and 17).

These two global dimensions were statistically distinct

and differentially sensitive to such factors as sleep loss,

diurnal rhythms and seclusion (ref. 15). Since the mood-

state parameters comprising the Affective and Activation
Mood Dimensions used were not identical with those

used by Monk (ref. 15), paired mood-scale correlation
coefficients within and between these two dimensions

were ranked and compared with the Mann-Whitney

U-test. Correlation coefficients were higher (P < 0.05)

for paired scales within the two global scales

(mean r = 0.43 and 0.41, respectively) than between
them (mean r = 0.31), thereby validating the separate

clustering of the mood scales into two global mood

dimensions. The PDISC scale had a significantly higher
correlation with the mood scales within the Affeetive

Mood Dimension (mean r = 0.42, P < 0.05), than with the

mood scales within the Activation Mood Dimension

(mean r = 0.22, NS), thereby justifying its placement in
the Affective Mood Dimension.

The mood test initiated the APTS test battery to avoid

possible modulation of mood responses by the perfor-

mance tests. After an 8 to 10 trial training period during

orientation and one training test at the onset of the

ambulatory control period, this 15-rain test battery was

given to all subjects daily during the ambulatory control,

BR, and ambulatory recovery periods in the late afternoon

at least 1-2 hr after exercise, showers or naps. The
computer was located directly below the heads of prone

subjects on gurneys. The Sleep Quality scales were

trouble-falling-asleep (SLEEP), scored on a much worse

(0) to much better (10) scale, and number of waking

episodes (WAKE) scored on a total episode (0-6) scale

(table 1). For the Self-Rated performance test the men

rated their overall performance on all performance tests

with respect to their overall performance on the previous

test battery (table 1).

Composite performance- The measures of performance

proficiency (i.e., accuracy, number of alternate key-

presses, reaction time latency) had widely differing

magnitudes and ranges. Also, reaction time latency

differed in direction of improvement from the other tests.

Therefore, to obtain a composite measure of overall

performance, daily values for each test were converted to

integer ranks with the "worst" (minimum = 1) and "best"

(maximum = 50). The daily ranks for each test were then

averaged across tests for each subject and then averaged

across subjects by exercise group (fig. 1). The mean of

the three tapping tests was computed prior to data ranking

to avoid providing excessive weight to the tapping data in

the composite performance means.
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Figure 1. Mean daily composite performance levels

expressed as integer ranks (1 = minimum and

50 = maximum). Values are group means for each of

eight performance tests (including mean of the three

tapping tests) during training (10 trials), ambulatory-
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Questionnaire composition- On the last day of BR

(day 30), the subjects were asked to respond to the

following two questions to assess their impressions of

the study and performance tests: What aspects of the bed

rest study environment were pleasant or rewarding or

unpleasant and irritating? Did you look forward to the

daily performance test as an activity to relieve the bore-

dom of the study environment or did you perceive the test

as an unwelcome interruption of your daily routine and
activities?

Statistical analyses- The three exercise groups were

evaluated for study treatment-period (orientation,

ambulatory control, BR, and ambulatory recovery)

effects, and BR-day treatment effects upon the perfor-

mance and mood test means, by two-way repeated-

measures analysis of variance (ANOVA). Statistically

significant differences in treatment means were compared

with the Newman-Keuis test. Bed-rest-day-dependent
mean trends were also evaluated by linear regression

(LR) with slope comparison by analysis of covariance

(ANCOVA). The resultant percentage changes for the

performance tests are presented in figure 2 and the

corresponding absolute changes for the mood-state and

sleep-quality scales are presented in figure 3. The null

hypothesis for A.NOVA, ANCOVA and LR was rejected
when P < 0.05; nonsignificant differences were indicated

by NS.
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mined by linear regression. Test abbreviations are defined
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Figure 3. Mean change in activation and affective mood

state parameters and sleep quality scales during bed rest

in the three groups, as determined by linear regression.
Test abbreviations are defined in table 1. Zero on the

y-axis indicates no change during bed rest, a positive

change indicates relative improvement, and a negative

change indicates relative deterioration. *P < 0.05 from

zero slope, fP < 0.05 from NOE group, CP < 0.05 from

FIE group.

Results

The assignment of the subjects to the three groups was

appropriate since no initial differences in performance
levels or mood states were detected. As a reference,

changes in peak oxygen uptake after BR were +2.6%

(NS) with ITE, -9.1% (P < 0.05) with IKE, and -18.2%

(P < 0.05) with NOE (ref. 8).

Perfornmnce tests- During BR all performance scores

improved in the three subject groups (fig. 1), except for

the unchanged reaction time (+1.2%, NS) in the ITE

group (fig. 2). Otherwise, improvement ranged from 7.7%

(NOE: NVrAP, P < 0.05) in the motor tasks to 40.9%

(NOE: REASON, P < 0.05) in the cognitive tasks (fig. 2)

and was significant (P < 0.05, LR) in all three groups in 7

(except TFTAP, SREACT, and STERNB) of the 10 tests.

There was no significant difference between exercise

groups in any performance test by treatment regimen.

The significant differences occurred only between the

two exercise groups and the NOE group during BR

(ANCOVA, fig. 2). These differences were inconsistent

as the exercise groups improved in STERNB (ITE + 12%,

P < 0.05; IKE + 9%, P < 0.05) relative to the NOE

(+0.3%, NS) group, but the NOE group improved in the

cognitive tests (REASON: NOE + 41%; 1TE and
IKE + 15%, P < 0.05; CODSUB: NOE + 28%,

ITE + 21%, IKE + 18%, P < 0.05), relative to the

exercise groups.

Mood and sleep quality- The Activation Mood

Dimension showed no treatment-regimen or BR day by

exercise group effects. However, the mean Activation

Dimension score declined during BR by 0.2 units

(P < 0.05, LR). CONCN was the only Activation Dimen-

sion parameter that changed during BR (-0.6 units,
P < 0.05). A marked deterioration in the Affective Mood
Dimension of 2-7 d duration occurred at the onset of BR

and was most pronounced in the PDISC mood scale. This

deterioration was significant for BR dl relative to pre-BR

d4 and BR d8 (P < 0.05). Subsequent improvement

(ANOVA by BR day) in the Affective Mood Dimension

was evident in ITE and NOE, P < 0.05, fig. 3). The means

of daily Affective Mood Dimension during BR were
better fitted by second-degree polynomials @2 = 0.77,

P < 0.05) than by linear regression (r2 = 0.2, P < 0.05).

These curvilinear trends peaked from BR d17 CIKE) to

d18 0TE, NOE), then declined to the end of BR.

No treatment regimen by exercise group effects were

detected by ANOVA for the Affective Mood Dimension.
However, BR-day effects were found for the Affective

Mood Dimension, where improvement occurred in IrE
from BR dl to dl I (P < 0.05), and in NOE from BR dl

to d3 (P < 0.05).

The 1TE group exhibited the only significant (P < 0.05)
trend during BR in the Activation Mood Dimension; this

decline was significant relative to NOE (ANCOVA,

P < 0.05). All four activation mood parameters (table 1)

exhibited a declining trend (FATIG and AROUS, NS,

MOTIV and CONCN, P < 0.05) during BR in ITE

(fig. 3), with significant progressive deterioration in
MOTIV relative to IKE (P < 0.05), AROUS relative to
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NOE(P< 0.05), and CONCN (relative to IKE and NOE,

P < 0.05).

In contrast, during BR, FIE showed improvement in
TENSE relative to IKE (P < 0.05), in SLEEP relative to

IKE and NOE (P < 0.05), and in WAKE relative to IKE

and NOE, (P < 0.05). A regimen by variable interaction

(P < 0.05) was found only for the SLEEP scale, in which

sleep quality improved significantly from BR to ambula-

tory recovery in ITE (5.5 to 7.3, P < 0.05), but not in the

IKE (6.0 to 6.1, NS) or NOE (6.9 to 6.8, NS) groups.

Treatment by study day effects were found for SLEEP
(P < 0.05) and WAKE (P < 0.05) indices. This resulted

from a significant decline in these indices at the onset of

the ambulatory control period. For example, the number
of awakenings increased by 1.4 -2.2 per night (P < 0.05)

during the first 3 days of ambulatory (P < 0.05), relative

to orientation dl, d2, and dS.

Self-rated performance means within the three subject

groups during ambulatory control and BR periods ranged
from 5.2-5.6 units; the subjects rated their performance as

improved relative to no change, which was 5.0 units. No

significant changes were detected in self-rated perfor-

mance by treatment regimen or BR day. A simultaneous

decreasing trend (NS) in both composite test (fig. 1) and

self-rated performance was evident at the onset of the

ambulatory control period and was attributed to the lack

of practice during the 3-11 week interval between the

orientation and ambulatory control. No statistically
significant improvement occurred after 17 d BR or

between BR and ambulatory recovery periods.

During BR, IKE exhibited the most stable mood and

performance. Of the 21 combined mood, sleep and

performance scales, significant parameter by BR effects

were found in eight mood or performance parameters for

NOE, in nine for 1TE, but only in two for the IKE group.

Composite performance- The orientation training was

sufficient to achieve stable asymptotic levels for the

10 tests (fig. 1). All means and variances stabilized by

seven trials, and differential stability was achieved in 8 of

10 tests by five trials. Composite performance, expressed

as mean integer ranks, improved continuously by

treatment regimen (P < 0.05) throughout the study.

Questionnaire responses-- These were obtained from all

ITE subjects, from four of six IKE subjects, and from

three of five HOE subjects. Thus, 14 of 18 subjects

responded and the remaining four declined to respond.

The quality of social interaction between subjects, staff

and investigators was rated asl_ositive by all 14 subjects.

Dally performance testing was negatively rated by 3 of

7 ITE subjects but in none of the three NOE respondents.

Discussion

The pattern of performance and mood changes during BR
is an initial deterioration during the first wk, followed by

improvement for about 2 wk, then progressive deteriora-

tion throughout the remainder of the BR period (refs. 1,

14, and 22). This deterioration is manifested by asthenia,

emotional lability, sleep disturbances, and inconsistent

performance. In the present study a similar sleep and
mood deterioration pattern from the onset of BR was

observed, followed by sleep and mood recovery, then

mood deterioration beyond 20 d of BR. In contrast to the

previous results (refs. 1, 14, and 22), most (13 of 24)
mood scales in the present study showed overall

improvement from the onset to the end of BR, and

performance tests consistently improved from the onset

of ambulatory control to the end of BR. The effectiveness

of daily exercise training during BR to counteract

deterioration in performance, mood, or sleep quality

(refs. I, 19, 22, and 26) was probably diminished in our

study by the lack of detrimental changes in these

functions during BR in the NOE group.

The high degree of subject adaptability to the conditions

in our study, in contrast to previously cited studies, is

attributed to several factors. First, our selection process

was effective in identifying candidates with optimal

characteristics (e.g., motivation, friendliness, and

compatibility) for adaptation to isolation, confinement,

restricted mobility, and exercise training. Second, several

factors contributed to mood and performance deteriora-

tion in previous BR studies, i.e., conflicts between

subjects and support staff (refs. 14 and 17), immobiliza-

tion or greatly restricted movement (refs. 22 and 25),

restriction of communication among and between subjects
and their friends and relatives (ref. 25), and restriction of

naps (ref. 20). Therefore, our more favorable habitability

factors probably contributed to maintenance of stable

affeetive mood, arousal, and the positive desire to

perform during BR, which may have been the key to the

unexpectedly consistent improvements in performance

accuracy.

Several interesting differences emerged between the three

exercise groups during BR. Progressive improvement in

sleep quality and redaction in psychological tension

occurred in the ITE group, relative to those in the other

groups. Since the IKE training regimen was of com-

parable intensity but of shorter duration (6.7 rain/d) than

the ITE regimen (60 mirdd), perhaps the daily duration of

exercise is important for inducing positive mood and

sleep-quality effects. This positive influence of strenuous

exercise upon sleep (ref. 16) and anxiety (refs. 16 and 18)
has been demonstrated in some exercise studies, but not

in others (refs. 11 and 21).
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Thegenerallypositiveeffects of chronic exercise training

on the state of well-being (ref. 16) and have been
attributed to three major hypotheses: distraction, where

exercise provides a diversion from other stress; mono-

amine, where exercise stimulates action of norepinephrine

and serotonin which counteract depression; and endor-

phin, where exercise stimulates release of endorphins

which reduce pain and produce euphoria (ref. 16). Only

the ITE group exhibited significant post-BR improve-

ments in mood and sleep quality which suggests that

strenous exercise training enhanced the adaptation to the

physical demands of ambulatory recovery. However, the

1TE group also showed impaired concentration after

transition to ambulatory recovery, and two of its
Activation Mood Dimension scales (MOTIV, CONCN)

decreased significantly during BR.

The NOE group improved in all performance tests during

BR, and showed greater improvement in the cognitive

performance tests than the two exercise groups. Also,
there were no differences between the NOE and IKE

groups in any mood-state or sleep-quality parameter.
Therefore, the significant improvement in cognitive

performance in ambulatory exercised subjects, but not in
sedentary control groups reported previously (ref. 12),

was not confirrned in our study. The NOE group respon-

dents were the only subjects who did not express a

negative attitude toward daily performance testing.

Three major conclusions emerge. First: the degraded

mood, sleep, and inconsistent performance reported from

previous BR studies are not due solely to inactivity. This

deterioration was more likely the consequence of selec-

tion of less motivated and adaptable subjects, problems or

constraints concerning subject interaction with personnel

internal and external to the study, attenuation of environ-

mental stimuli, and restriction of naps. Second: the less

favorable trends in cognitive performance and activation

mood scales and the negative attitude toward the per-

formance test regimen in the ITE group probably
reflected chronic exercise induced overtraining fatigue or

excessive total workload resulting from the combination

of exercise, other test demands, and subject activities.
Third: maintenance of concentration and motivation with

improvements in cognitive performance in the NOE

group implies that the performance test regimen relieved
boredom by providing distraction.
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Abstract

DcRoshia CW. The effectofhabitabilityand selection

upon human performanceand mood duringhead down

bed rest.Performancetaskproficiencyand mood were

investigatedina repeated-measuresstudyoftwo groups

(GI,n = 12;G2, n = 6)ofhealthymen duringseparate

30 day head down (---6° )bed rest(BR) regimens,with

7 days ofprc-BR and 4 days ofpost-BR ambulatory

confinement.The dailybatteryconsistedof 10 perfor-

mance tests and eight mood and two sleep scales. Mean

performance changes during BR ranged from +2.6 to

+23.4%; this improvement was significant (P < 0.05) in

8 tests. Unexpected significant differences between

groups were detected, including higher means in three

performance tests in GI during pre-smdy training, a

confinement onset increase in waking episodes of

0.9-1.3 per night in GI, relative to G2, and an improve-
ment in the Affective Mood Dimension in G2, relative to

GI. I attribute these differences and the unexpected

absence of performance and mood deterioration during
BR to favorable subject selection procedures and differ-

ences in group size and environmental habitability.

Introduction

Bed rest (BR) exposes humans to restricted mobility,
confinement and isolation which probably produce a

subtle form of sensory deprivation with reduced pro-

prioceptor and kinesthetic input (refs. 32 and 46). The
associated loss of strength, energy, motivation and

concentration, with increased fatigability, sleep

impairment, and sensitivity to physical or emotional
stressors (asthenia), has been reported in several BR

studies (refs. 2, 28, 30, 38, 40, and 42).

Performance deficits in controlled scanning (ref. 44),

visual acuity (ref. 16) and productive thinking (ref. 3)

occurred after initial BR adaptation, but others found no

consistent performance changes (refs. 33, 35, 39, 42,

and 43). Previous BR studies have three deficiencies:

(a) they used single tests of performance efficiency and
lacked statistical verification of test reliability and

sensitivity, (b) they provided only anecdotal descriptions

of changes in mood and well-being (refs. 2, 3, 28, 38, 40,

and 42), and (c) they lacked information on study habi-

tability and subject selection. Therefore, the objective of

this study was to provide daily quantitative assessment of

the effects of long duration head down BR on validated

performance tests and selected mood and sleep quality

scales in two separately conducted studies, and to

evaluate the impact of subject selection procedures and
environmental habitability upon the observed responses.

Methods

Subjects-- A pool of over male 2000 respondents to a

newspaper ad was reduced to 500--600 men after a

telephone interview, reduced to 120 men by a personal
interview, and reduced to 27 men after a physical (ref. 15)

and detailed briefing. The interview procedure was used

instead of standard personality screening tests because

such tests select out those with psychopathological traits

rather than select in those with optimal personality traits

(ref. 24) and have not been as effective as the interview

procedure in selecting subjects for biomedical experi-
ments conducted in the Human Research Facility (HRF)

at Ames Research Center. After an orientation test phase

conducted in the (HRF), informed consent was obtained

from 23 selected subjects who had the option to par-

ticipate in a study starting June 30, 1986 (Group 1,
N -- 12) or a repeat study starting August 18 (Group 2,

N = 11). The choice of study option was necessary to

accommodate subjects with fall job commitments. All

12 subjects in Group 1 completed the study. Four Group 2

subjects declined to participate and one subject left the

study for personal reasons prior to the BR phase which

left six subjects in the second group. Subjects were
selected in on the basis of a healthy appearance, friend-

liness, compatibility, motivation, and their assessed

ability to adapt to isolation and confinement in the HRF.
Three men had been subjects in prior BR studies.

About one of three nursing staff candidates were selected
after an interview with the head nurse. Favorable criteria

included prior BR study nursing experience, positive
attitude and inclination for cooperative teamwork.

This study was part of a multidisciplinary experiment
on the effectiveness of lower-extremity isotonic and

isokinetic exercise training regimens upon the mainte-
nance of maximal oxygen uptake and muscular strength

and endurance during 30d of BR. Subject selection was

restricted to match the average age (36 + 1 yr) and
maximal oxygen uptake (44 ml.min'l-kg "1) of the active

astronaut corps. The subjects were allocated, on the basis

of age, peak oxygen uptake, and maximal isometric knee

extension strength,into three groups: no exercise

(Group 1: N = 4; Group 2: N = 1), isotonic exercise

(Group 1: N = 4; Group 2: N = 3) and isokinetic exercise

training (Group 1: N = 4; Group 2: N = 2). Diet, exercise,
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and clinical procedures details (ref. 22) and the effects

of the exercise regimens upon mood and performance

(ref. 15) have been published.

Experimental design- From three to 11 weeks after the

orientation test phase in the HRF, subjects were confined
in the HRF for an ambulatory control phase (pre-BR, 7d),

head down (-6 °) BR (30d), and ambulatory recovery

phase (post-BR, 4d). The men were confined in two-to-

four-person rooms with moveable partitions so they could

be isolated at night or during tests. The photoperiod was

16 hr light:8 hr dark (lights on at 0700 hr). During BR,

subjects were restricted to head-down recumbency, except

during meals when they were permitted to prop their
heads up on an elbow. As time permitted, they were

permitted to nap during the day, to freely interact with the

staff, investigators and other subjects, and to engage in

personal hobbies, to listen to personal stereo systems, to
read, and to view television and videocassette movies.

Subjects participated in other experimental test regimens,
which included exercise (refs. 15 and 22) twice daily for

30 minutes in the exercise groups, weekly isokinetic

exercise in all subjects, blood sampling, cardiac output

and ultrasound. Posture/gait, tilt table, muscle magnetic

imaging and bone densitometry tests were performed

during the ambulatory periods. No visitors were permitted
in the HRF but the men had unlimited outside communi-

cation by means of a single pay telephone, to which they

were transported by gumey.

Performance tests- Performance testing was done with

the Automated Portable Testing System (AFTS, Essex

Corp., Orlando, FL. 32803) software implemented on a

NEC 8201A microcomputer. This system was selected for

portability, reliability, test automation capability, and

utility for short-duration testing (refs. 7, 26, and 27). Ten

performance tests (refs. 26 and 27, table 1) from the
30 recommended PETER program tests (ref. 7) were

selected to tap visuo-spatial (MANKIN, PATRNC),

encoding (CODSUB), short term memory (STERNB),

verbal cognitive reasoning (REASON), pursuit tracking
(ACM) and manual dexterity abilities (SREACT,

PHTAP, TFTAP, NPTAP).

The number of trials required for performance test means,

variances, and correlation matrices (differential stability)

to stabilize was determined by Bittner's methods (ref. 6).

The five performance tests with error scores (REASON,
CODSUB, MANKIN, PATRNC, STERNB, table 1)

were analyzed as net accuracy but were also scored for

response latency (msec) and number of errors.

Although log-latency is claimed to be the most reliable

index for the MANKIN test (ref. 11), MANKIN accuracy

scores were used in this study since no ceiling effects

were detected in accuracy scores (Cochran's homogeneity

of variance test) and no substantial differences between

analyses done on accuracy or log-latency scores were
detected. The measures of performance (i.e., accuracy,

number of alternate keypresses, latency) had different

magnitudes and ranges. Therefore, to obtain a composite
measure of overall performance, daily values for each test

were converted to integer ranks with the "worst" or
minimum = 1 and "best" or maximum = 50. The daily

ranks for each test were then averaged across tests for

each subject and then averaged across subjects by study

group (fig. 1). The mean of the three tapping tests was

computed prior to the data ranking to avoid providing
excessive weight to the tapping data in the composite

performance means.

Mood test- A visual analog scale (VAS) mood test was

developed and incorporated into the APTS performance
software. The VAS mood test was used because it

provides fast and reliable (refs. 9 and 29) mood assess-

ment with a high degree of mood state resolution and less

chance of subject non-compliance, response stereotyping

or remembered responses (ref. 29). The VAS mood test

provided 21 levels of mood state resolution on a 10-cm
scale between the two mood-state adjectives. The

VAS mood test included eight mood scales, two sleep

questions from the St. Mary's sleep questionnaire

(ref. 18) to document sleep latency and disturbance, and

a self-rated estimate of overall change in performance

proficiency between tests (table 1).

Using the validation procedure of Monk (ref. 29), the
mood scales were allocated four each into two composite

mood dimensions (table 1). The global "Affective Mood

Dimension" included four measures of feelings or

affective states and the global vigor, or "Activation Mood

Dimension" incorporated four measures of activation

states. These global scales are statistically distinct and

differentially sensitive to environmental factors such as

sleep loss, diurnal rhythms and seclusion (ref. 29). The

physical discomfort (PDISC) scale indicated the state of

physical uneasiness or the extent of mild aches and pains
which are common at the onset of bedrest (refs. 3, 28,

and 30). The other seven mood-state scales (ref. 9) and

the configuration of the mood scales within each mood
dimension have been validated (reL 15).

The mood test initiated the test battery to avoid modu-

lation of mood responses by the performance tests. After

an 8-10 trial training period during orientation and one

training test at the onset of ambulatory confinement, this

15-rain test battery was given to all subjects daily in the
late afternoon at least 1-2 hr after exercise, showers or

naps. Data were recorded only on six of the seven pre-BR

days. The computer was located directly below the head

of the prone subject on a gurney.
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Table1. Performance and mood-test information

Performance Tests Duration (sec) Constructs Tested

Simple Reaction Time (SREACT)

Code Substitution (CODSUB)

Pattern Comparison (PATRNC)

Sternberg Short Term Memory (STERNB)

Air Combat Maneuver (ACM)

Preferred Hand Tapping (PHTAP)

Grammatical Reasoning (REASON)

Two Finger Tapping (TFTAP)
Manikin (MANKIN)

Non-preferred Hand Tapping (NPTAP)

1) Latency in milliseconds

60 or 15 trials Manual dexterity 1

75 Encoding 2
75 Visuo-spatial 2

75 Short-term memory scan rate 2

120 Pursuit tracking 3
10 (two runs) Manual dexterity 4

90 Reasoning, logic 2

10 (two runs) Manual dexterity 4

60 Visuo-spatial transformation 2
10 (two runs) Manual dexterity 4

2) Accuracy (number correct minus number of errors)

3) Score (number of hits)

4) Number of alternate key presses, highest of two runs

Mood State Tests Test Adjectives

Activation Mood Dimension

Motivation to Perform (MOTIV)

Arousal State (AROUS)

Fatigue Level (FATIG)
Ease of Concentration (CONCN)

Affective Mood Dimension

Psychological Tension (TENSE)

Elation (HAPPY)

Physical Discomfort (PDISC)

Contentedness (PLEAS)

Sleep Quality

Trouble Falling Asleep (SLEEP)

Number of Waking Episodes (WAKE)
Self-Rated Performance

Relative to that on the previous test battery (PERF)

Mean of Four Scales Below

Bored (0)/Interested (10)

Sleepy (0)/Alert (10)

Weary (0)/Energetic (10)
Very low (0)/Very High (10)
Meah of four scales Below

Tense (0)/Relaxed (10)

Sad (0)/Happy(10)

Very high (0)/Very low (10)

Unpleasant (0)/Pleasant (10)

Much worse (0)/Much better (10)

Total episodes (Range 0-6)

Much worse (0)/Much better (10)

Habitability questionnaire-- On BR d30, the subjects

were asked to respond to four questions to assess their

impressions of the study environment: "What aspects

of the bed rest study environment were pleasant or

rewarding or unpleasant and irritating? Was the M rest

study environment boring and monotonous or stimulating

and interesting? Did you look forward to the daily per-

formance test as an activity to relieve the boredom of the

study environment or did you perceive the test as an

unwelcome interruption of your daily routine and
activities? What were the positive and negative aspects

of theperformance testT'

Statistical analyses-- The two study groups were

evaluated for treatment-phase (orientation, pre-BR, BR,

post-BR) and BR-day treatment effects by two-way

repeated-measures analysis of variance (ANOVA).

Statistically significant differences in treatment means

were compared with the Newman-Keuls paired com-

parison test. BR-day-dependent mean trends were also
evaluated by linear regression (LR) with slope com-

parison by analysis of covarianee (ANCOVA). The

resultant percentage changes obtained for the perfor-

mance tests are presented in figure 5; the corresponding
absolute changes for the mood and sleep quality scales

are presented in figure 6. The null hypothesis for

ANOVA, ANCOVA and regression was rejected when

P < 0.05; nonsignificant differences were indicated

by NS.
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Results

The training regimen achieved stable asymptotic levels

of performance since performance means and variances

stabilized by seven trials and differential stability was

achieved in eight of ten tests by five trials. Composite

performance, expressed as mean integer ranks (fig. 1),

improved between treatment phases (ANOVA, F3,

21 = 112.0, P < 0.0005) although there was a NS decre-

ment between training and HRF confinement (fig. I) due

to lack of practice during the 3-11 wk interval between

these phases. No significant change (Newman-Keuls)

occurred in composite performance between BR and post-

BR phases.

During BR, mean daily performance changed (F29,

464 > 1.6, P < 0.05, ANOVA) in eight tests (except

SREACT and STERNB), including changes in four tests
in Group 1 (F29, 464 > 1.8, P < 0.01) and six tests in

Group 2 (F29, 464 > 1.6, P < 0.05). These changes

reflected improvement from 2.6% flFTAP) to 6.9%

(NPTAP) in the psychomotor tasks to a maximum of

22.2% (CODSUB) and 23.4% (REASON) in the

cognitive tasks. This improvement was significant
(t > 2.0, P < 0.05, LR) in nine tests in Group 1 (except

SREACT) and all tests in Group 2 (fig. 5). No significant

changes were detected in self-rated performance by

treatment phase or BR day.

The Activation Mood Dimension scale means (fig. 2(a))

showed no treatment-phase effects (ANOVA) but it

decfined during BR (-0.2 units, t28 = -2.2, P < 0.05, LR).
A marked deterorafion in the Affective Mood Dimension

(fig. 2Co)) of two to seven days duration occurred at the

onset of BR (fig. 2(b)) and was most pronounced in the

PDISC scale (fig. 3). This change was significant
(F < 0.05, Newman-Keuls) for BR dl relative to orien-

tation dl-3, pre-BR d4, and BR d8. Subsequent improve-

ment trends in this dimension were reflected in BR day

effects (F'29, 493 = 3.4, P < 0.0005, A_NOVA) in both

groups (1: F29, 464 = 2.0, P < 0.01; 2: 1:29, 464 = 2.4,

P < 0.0005). The means of daily Affective Mood

Dimension during BR were better fit by second-degree

polynomials (t29 > 5.2, P < 0.00001) than by LR

(Group 1:t29 -- 1.5, NS; Group 2:t29 = 4.5, P < 0.0005).

These curvilinear trends peaked at d17 (Group 1) and d20

(Group 2), then declined to the end of BR (Fig. 2(b)).

Sleep quality study day effects were found in the SLEEP

(F48, 816 = 2.0, P < 0.0005, ANOVA) and WAKE (F48,

816 = 2.8, P < 0.0005) indices. At the onset of ambulatory
confinement the SLEEP scale decreased 1.8--2.3 units,

(Newman-Keuls, P < 0.05), relative to orientation dl--4,

8 and 9 and the WAKE scale (fig. 4) increased by

1.4-2.2 awakenings per night, P < 0.01 relative to
orientation dl-2, 5-9 and BR dl0, 23, 26-27, 29-30.

No significant BR onset associated changes in sleep

quality were detected.

Several unexpected differences were found between

the two study groups. Questionnaire responses were

obtained from all six subjects in Group 2 but only eight of

12 subjects in Group 1. The negatively rated aspects were

complaints about food quality (five of seven respondents

in Group 1 but only one of six in Group 2) and telephone

access (three subjects, Group 1 only). The study environ-

ment was rated as stimulating or interesting by all eight

Group 1 respondents but only by two of six from

Group 2.

The major difference was an increase in awakenings

during confinement of 0.9-1.3 episodes per night (fig. 4)

in Group 1, relative to Group 2 (ANOVA by BR day, F1,

16 = 6.0, P < 0.05, by treatment phase interaction, F3,

48 = 2.8, P < 0.05). Initial differences (a priori sample

error ANOVA) during training were detected between

Groups 1 and 2 in performance (PATRNC mean accuracy

= 52.4, 40.8, respectively, F1, 16 = 18.4, P < 0.0005;

TFTAP mean accuracy = 53.6, 46.2, respectively, F1,

16 = 6.9, P < 0.025). Self-rated performance means were

higher in Group 2 (6.0) than in Group 1 (5.1, F1, 16 = 9.8,

P < 0.01). These initial differences persisted for PATRNC

(A.NOVA by treatment phase, F1, 16 = 14.4, P < 0.01)

and self-rated performance (F1, 16 = 25.4, P < 0.0005).

Self-rated performance and mean performance test

change per day were higher during BR in Group 2 (6.4,

0.45%, respectively) than in Group 1 (4.9, 0.32%). The

Affective Mood Dimension improved from orientation to

post-BR in Group 2 (6.3-6.9 units), but declined in Group

1 (6.2-5.8 units, ANOVA by treatment phase interaction:
F3, 48 = 4.6, P < 0.01).

During BR, improvement indicated by positive LR slope

(t29 > 2.05, P < 0.05) occurred in 72% of mood scales

and 92% of performance tests among Group 2 subjects,

but only in 48% of mood scales and 80% of performance

tests in Group 1 (figs. 5 and 6). Five performance tests
(MANKIN, REASON, PATRNC, ACM, PHTAP)

showed more positive trends during BR in Group 2 than
in Group 1 (fig. 5, ANCOVA, F1, 56 > 4.3, P < 0.05),

while only CODSUB showed a more positive trend in

Group 1 (F1, 56 = 6.0, P < 0.05). The Affective Mood
Dimension and the PDISC, PLEAS, and FATIG scale

daily means showed more positive trends during BR in

Group 2 than in Group 1 (ANCOVA, F1, 56 > 4.5,

P < 0.05). The MOTIV scale trend was more positive
during BR in Group 1 (F1, 56 = 8.7, P < 0.005; group

by BR day ANOVA interaction, F29, 464 = 2.0). A

confinement effect was detected only in PDISC, which

was higher in Group 1 in the ambulatory confined state

(combined pre-BR and post-BR mean = 5.3) than in the
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unconfined state (orientation mean = 6.4, F1, 44 = 7.1,

P < 0.01). Despite the negative trend (t28 =-2.9,
P < 0.01, LR) in the MOTW scale in Group 2 during BR,

the MOTIV means remained positive (i.e., >5.8 scale

units) in both groups in all treatment phases.

Both groups improved in REASON accuracy from

orientation to post-BR (ANOVA by treatment phase,

Group I: F3, 48 = 14.7, P < 0.0005, +38.9%; Group 2:

F3, 48 = 17.5, P < 0.0005, +86.4%). REASON was the

only performance test with error scores that showed a

substantial (3.4 per trial) incidence of errors. Improve-

ment in Group 1 occurred by reduction in latency (1=3,

48 = 5.7, P < 0.01, -18.2%) but not errors (F3, 48 = 1.7,

NS), while both latency (F3, 48 = 9.8, P < 0.0005,

-28.8%) and errors (F3, 48 = 6.8, P < 0.001, -46.0%)

were reduced in Group 2. During BR a negative trend in

daily errors occurred in Group 2 (t29 = -2.4, P < 0.05,

-29.2%, LR), but not in Group 1 (t29 = --0.9, NS, -7.6%).

Discussion

The pattern of mood changes during head down BR was

initial deterioration followed by improvement for about

two weeks and increasing mood deterioration during the

last ten to 13 days of BR. Similar mood patterns were

reported in earlier BR studies (e.g., refs. 2, 28, 40, and 42)

but these studies reported significant mood deterioration,
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manifested by asthenia, emotional lability, sleep distur-

bances, and inconsistent performance during BR. In the

present study, performance improved throughout

confinement and most mood scales improved from the

onset to the end of BR. The lack of procedural detail on

subject selection, habitability, and performance test

validation in the earlier, predominantly Soviet BR studies
(refs. 2-4, 16, 28, 37, 38, 40, 44, and 45) was a problem

in evaluating the discrepancy between the absence of

mood and performance deterioration in the present study

and its presence in the earlier studies. In these studies

subjects were allowed to read and converse with each
other and were provided with radio and television

(ref. 37). However, mobility was highly restricted

(refs. 37, 40, and 44) and outside contact was limited

(ref. 44). Dr. Eugene Ilyin (Institute of Biomedical

Problems, Moscow, personal communication 1989)

indicated that Soviet BR subjects are chosen from

institute staff, subject selection is primarily based upon

clinical criteria, some subjects have prior BR experience,

and there is no direct contact permitted between subjects

and people outside the research facility.

I attribute the higher degree of subject adaptability to the

environment of the present study to several factors. First,

the selection process was effective in selecting in can-

didates with optimal characteristics (e.g., motivated,

friendly, compatible and mature) for adaptation to

isolation, confinement and restricted mobility from a

large subject pool. Rigid psychiatric assessment may be

necessary to obtain normal subjects for clinical studies

(refs. 23 and 34) since 16.5% of candidates presenting

themselves as normal have been diagnosed with mental

disorders (ref. 23) and 50.9% of applicants have been
excluded for psychiatric, neurologic, or medical disorders

that might affect brain function (rd. 34). Our selection

process was not done by quantitative criteria (refs. 23

and 34) but was effective since (1) standard personality

assessments are less effective in selection since they are

designed to select out individuals with psychopathology

rather than select in individuals with optimal personality

traits (ref. 24), (2) voluntary refusal to participate (self-

selection out) may be more important in excluding

psychologically unfit subjects in a long duration confine-

ment study than in short term clinical studies, where the

degree and duration of psychological contraints is

considerably lower, (3) a NASA-sponsored study may

attract more healthy and motivated subjects than clinical

studies, and (4) the orientation regimen in our study can

detect maladaptiv¢ behavior which is only elicit_ by

exposure to study environment and test conditions.

Second, prior experience enables individuals to better
overcome the effects of isolation and confinement

(ref. 36) and reduces incidences of hostility and anxiety

in subsequent BR studies (ref. 41). The inclusion of

subjects with prior BR study experience provided subjects

of proven adaptability whose experience helped the naive

subjects adjust to environmental conditions.

Third, the effective selection of nursing staff likely

contributed to the reported high quality of staff-subject
social interactions. Conflicts between isolates and support

staff arc the most important source of adjustment prob-

lems during long term isolation (ref. 36) or BR confine-
ment (refs. 14, 28, and 30). Minor daily stress events and

physical symptoms have greater effects on daily mood
levels than chronic stress or major life events (ref. 17) but

chronic stress increases the adverse effects of daily stress

events while social supports reduce it (ref. 12). Therefore,

the positive social interactions and social support

provided to subjects in this study probably minimized
daily stressful conflicts and the negative impact of such

conflicts upon mood.

Fourth, a large variety of experimental and subject

activities provided a stimulating environment which may

have prevented the deterioration in sleep and arousal
observed in a BR study in which there was an intentional

lack of sensory stimuli (ref. 10). Fifth, the low degree of

restricted mobility during head down recumbency may

have prevented the deterioration in mood observed in

studies with cast immobilization of subjects (refs. 14

and 41) or restricted arm and leg movements (refs. 40

and 44) which may constitute a type of sensory

deprivation (ref. 33).

Sixth, outside communication with friends and relatives

may have prevented the functional impairment and

performance deficits observed in bedrcsted patients who
had restricted social contacts (ref. 25). Although outside

contact is discouraged in the Soviet BR studies, frequent

audio contact with relatives, friends and celebrities is very

important for the well being of cosmonauts during long

duration Soviet space missions (ref. 3 I), in which mood

impairment is less severe (ref. 8) than in the BR studies.

Seventh, daytime naps may have counteracted sleep
difficulties induced by the onset of confinement or BR.

When napping was restricted during BR (ref. 33), all

subjects were physically tired after 1-2 weeks. Eighth,
the maintenance of stable affective mood and positive

motivation to perform may have been responsible for the

unexpected improvements in performance since high

subject motivation prevents performance deterioration in

isolation (ref. 21).

The two consecutive BR studies were conducted under

identical experimental conditions with identical test

procedures. The unexpected differences between the two

groups in performance, sleep and mood probably resulted
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fromabias in group selection and an improvement in

habitability resulting from a reduction in group size
between the studies. The selection bias resulted from

subject choice of study group participation and from the

loss of the five subjects who declined to participate in the

second study which resulted in a group of more adaptable

subjects. The combination of high subject density and

numerous testing procedures in the first group may have

created nap disturbances and psychological tensions in

response to frequent interruptions, movement of subjects,
environmental noise, and limitation of environmental

resources. The latter conclusion is supported by infor-

mation from another 30d head down BR study which was

conducted a year after the present study with 11 male

subjects, including four subjects with previous BR study

experience. These subjects adjusted welt to the study

environment, expressed fewer complaints, and had fewer

daytime naps than the 12 Group 1 subjects in the present

study (Dr. Joan Vernikos, personal communication,

1987). The incorporation of one major test protocol

(muscle electrical stimulation) and the absence of exercise

regimens may have promoted more favorable adjustment

in the latter study by eliminating the strain and discomfort

of exercise and by reducing the experimental test demand.

This may have resulted in lower incidences of subject

interruptions, and noise and psychological tensions

created by test procedures and the frequent movement of

subjects to test sites; thus this study environment may

have been more comparable to the Group 2 environment

in the present study, in which there were more activities

but fewer subjects to create psychological disturbances.

Although the study environment was more stressful for

Group I subjects, these subjects had a more positive trend

in motivation to perform and indicated that the study

environment was more interesting than the Group 2
subjects. This implies that a certain level of"micro-

stressor" stimulation may be necessary to counteract
boredom.

The performance daily means changed from an expo-

nentiai pattern of improvement during training to a linear

pattern during BR. Performance failed to improve only

during the late BR and post-BR phases perhaps due to the

transition from BR to post-BR ambulation, a performance

asymptote or ceiling effect, or an end of study anticipa-

tion effect. Performance improvement during the
confinement phase may represent the transition from a

controlled to an automatic mode of performance process,

in which performance is less sensitive to environmental

influences (ref. 19). Alternatively, the improvement may

reflect a progression from a less efficient cognitively

loaded performance process to a more efficient per-

ceptual, then perceptual motor loaded performance

process (ref. 1).

Self-rated performance levels were significantly higher in

Group 2, starting with the orientation phase. The self
assessment of performance in Group 2 may have been

influenced by the more positive mood levels and adjust-

ment in these subjects. Self-rated performance may be

important in evaluating human responses to hypokinesia

since subjects undergoing long duration water immersion

may underestimate performance capability, which may

impact subsequent performance expectations and
proficiency (ref. 20).

The physical discomfort scale is highly correlated with
the other Affective Mood Dimension scales (ref. 15) and

it more clearly differentiated the response of the two

study groups to BR than the other mood scales although

the two BR groups were subjected to identical experi-

mental conditions and no group differences in discomfort

would have been expected. The physical discomfort scale,

while not used in standard mood tests, provided the most

sensitive index of psychological response to BR. It

showed the largest magnitude change at the onset of BR

and was the only scale to detect a confinement only effect
between the ambulatory training and the confined

ambulatory pre-and-post-BR phases. This effect may

represent a confinement effect upon mood or may reflect

the impact of the exercise training regimen which was

conducted only dating confinement.

Psychological factors may be an important barrier to long

duration space flight (ref. 5). The results of this study

suggest that given appropriate personnel selection and
favorable habitability, mood and performance changes

with potentially adverse operational consequences can be

prevented during hypokinesia. These results have several

implications for the maintenance of stable mood and

performance levels in space mission analog environments

which subject individuals to long duration isolation and

confinement: (I) personnel selection and prior experience
are important factors to ensure more favorable adjustment

and prevent interpersonal conflict, (2) habitability factors

may have a more important impact on adaptation than

exercise regimens, and (3) adaptation is optimized by

maintainng a balance between boring or monotonous
conditions and excessive workload or stimulation.

Unstable mood, sleep difficulties and decfine in per-

formance efficiency may occur in long duration space
missions (ref. 13) and BR studies (refs. 28 and 45). In the

present study the onset of negative trends in several mood

scales after 17 days of BR suggests that adverse changes

in mood might have occurred with longer exposure to

hypokinesia. There is a need for quantitative evaluation of

mood and performance in longer duration hypokinesia

studies where the dynamics of long term changes in mood

and performance can be documented. There is also a need
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for more studies on the effect of group size, composition

and structure upon adaptability to confinement and a need

for prestudy psychological evaluation of subjects prior to

confinement to identify personality traits which are

predictive of adverse reactions in susceptible individuals.
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Appendix E

BASAL STUDY

VAR I ABLE

SOD I UM

POTASS I UM

OSMOLAL I TY

CPK

LDH

LACTATE

GLUCOSE

PROTE I N

CORT ISOL

ALDOSTERONE

ACTH

PLASMA RENIN ACT I VlTY

AVP

NOREP I NEPHR I NE

EP I NEPHR I NE

PAGE

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

143



SODIUM (mEq/I)

SUBJECT

376

407

409

397

391

DAY

-3 1 8 14 21 +4

138

138

137

139

135

138 40

139 50

136 40

138 40

139 70

138 48

1 31

20

00

50

10

80

136

136

136

139

140

.40 137.50 136.30

.10 138.20 137.10

.40 137.70 137.70

.00 138.00 138.30

.60 139.10 138.80

138 30

138 50

138 30

137 80

138 20

138 22

0 26
MEAN C 137 72 137.70 138.10 137.64

STD. DEV. C 1 22 2.00 0.62 0.98

390 138

420 137

412 137

403 140

385 136

405 135

394 140

MEAN L

40 138.70

30 139.10
70 137.30

60

60 140.60

00 139.40

30 134.80

139 20 136

139 60 136

137 40 137

139 00 139

141 60 141

140 50 141

137.10 138

10 137.70 136.20

30 138.20 136.60
00 138.00 138.10

10 138.70 139.40

60 140.30 141.10

20 140.00 139.90

60 138.10 139.50

137 99 138.32 139.20 138 56 138.71 138.69

STD. DEV. L 1 99 2.03 1.60 2 24 1.03 1.80

381 138

408 139

422 138

392 137

372 134

399 134
402 136

10 138.60 137

00 138.30 140

90 137.90 136
40 138.10 135

00 139.00 138

50 140.80 138

60 135.70 138

50 139

10 138

90 136

90 137

40 140

40 140

30 139

70 136.30 135.00

00 138.40 136.50

40 137.40 139.20

10 136.60 138.40

60 138.10 138.70

60 138.60 140.70
50 138.60 139.70

MEAN E 136 93 138.34 137 93 138.84 137.71 138.31

STD. DEV. E 2 01 1.52 1 33 1.69 0.96 1.95

TOTAL MEAN 137.73 138.16 138.47 138.44 138.18 138.27

TOTAL STD. DEV. 1.87 1.56 1.34 1.93 0.97 1.65
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POTASSIUM (mEa/I)

SUBJECT

376 4

407 4

409 4

397 3

391 4

DAY

-3 1 8 14 21 +4

36 4.33

31 4.31

66 4.52

72 4.02

36 4.12

4.24

3.88

4.27

3.88 3

4.20 4

3

3

3

4

4

4.24

3 87

4 50

3 63

4 4O

413

0 37

95

87

94

08

07

MEAN C 4 28 4.26 4.09 4 3 98

STD. DEV. C 0 34 0.20 0.20 0 0 09

08 4.62 4

17 4.27 3
15 4.04 3

20 4.25 4

34 4.90 4
04 4.81 4

29 4.23 4

4 08

3 86
4 25

87

21

05
18

08 3

89 3

70 4

04 3

29 4

55
37

390 4

420 4

412 4
403 4

385 4
405 4

394 4

17 4.27 4

45 4.24 4
05 4.41 4

35 4

23 4.25 4

53 4.45 4

86 4.57 4

MEAN L 4 38 4.37 4 18 4.45 4 13

STD. DEV. L 0 27 0.13 0 11 0.33 0 29

381 4.54 4

408 4.12 4

422 4.76 4

392 4.21 4
372 4.84 4

399 4.18 4

402 4.38 4

29 4

31 4

63 4

81 4
22 4

51 4

13 4

22

96

96
17

88

03

19

29 4

22 4
14 3

21 4

O0 5

02 3

12 4

31 4

09 3

80 3

28 4

04 3

96 4

07 4

91

98

13

90

27

4 52

421

413

0 22

MEAN E 4.43 4 41 4 14 4 22 4 06

STD. DEV. E 0.29 0 24 0 11 0 40 0 13

TOTAL MEAN 4.37 4.36 4.15 4.27 4.08 4.07

TOTAL STD. DEV. 0.29 0.20 0,20 0.35 0.21 0.17

401

412

3 88
431

419

3 94

4 O0

4 06

015

145



OSMOLALITY (mosm/kg)

SUBJECT

376

407

409

397

391

-3 1 8

290

292

290

294

DAY

290 00
292 00

292 00

292 00

288 00

290 80

1 79

4

287 00 291 00 286 00
286 00

291 00

292 00

294 00

290 20

3 19

21

287 00

00

00

00

00

291 00

285 00

290 00

290 00

289 40

2 51

MEAN C 290 60

STD. DEV. C 2 61

292 00

291 00

293 00

290 00

290 60

2 30

390

420
412

403

385

405

394

292.00

294.00
296.00

287 00
288 00

294 00

286 00

289 00

288 00

286 00

288 29
2 75

292.00

289.00

287.00

286.00 290.00

287.00 288.00

292.00 290.00

296.00 294.00

296.00 294.00

292.00 294.00

287.00 289.00

MEAN L 291.67 290.86 291.29
STD. DEV. L 3.27 4.26 2.63

287 00

292 00
289 00

292 00

288 00

285 00

280 00

287 57

4 20

381

4O8 29O

422 291

392 289

372 292

399 290

402 292

290 00 291 00 294 00 290 00 288 00
00 290

00 295

00 288
00 287

00 295

00 290

00 298

00 285

00 288

O0 288
O0 284

O0 289

00 294

00 289

00 290

O0 290

00 293
00 290

00 293

00 291

00 289

O0 291

00 293

00 298

O0

O0

O0

O0

O0

O0

MEAN E 290 57 290 86 289 43 290 86 291 86

STD. DEV. E 1 13 3 13 4 96 1 86 3.29

TOTAL MEAN 289.79 291.06 288.74 290.68 291.32

TOTAL STD. DEV. 2.25 2.84 4.04 3.09 2.77

+4

290 00

291 00

292 00

292 00

294.00

291 80

148

291 00

294 00

291 00

295 00

302 00

297 00

294 00

294 86
3 80

294 00

293 00

293 O0

290 00

296 00

293 O0

295 00
293 43

1 90

293.53

2.84
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CPK ( IUI I)

SUBJECT

376 120

407 182

409 158

397 113

391 136

DAY

-3 8 14

40 122

50 199

70 189

00 96

30 160

10 47.40 79
00 82.80 97

40 135.30 108

20 73.20 52

20 57.40 57

7O 48

20 90

20 9O

6O 48

90 62

90

70

30

20

30
MEAN C 142 18 153 38 79.22 79 12 68 08

STD. DEV. C 28 54 43 80 34.21 24 12 21 22

60 165.30 84

70 191.60 63

60 162.50 72

80 98

40 248.20 99

80 479.60 155

10 120.40 91

20
30

70

60

60

30

80

68 10
95 20

83 40

107 20

93 20

144 10

102 20

99 06

88

115
99

97

129

350

107

390 142
420 163

412 175

403 168

385 150

405 232

394 112

+4

215.90
195 10

162 30

88 60

415 00

215 3R
121 60

70 364.30

10 161.10

90 261.30

00 224.60

70 124.70

70 275.30

50 126.90

MEAN L 163 71 227.93 95 07 141 23 219.74

STD. DEV. L 37 03 130.26 29 72 23.66 93 32 88.34

30 103.10

20 190.50

90 198.60

20 100.20

70 62.50

30 208.10

4O 133.80

381 94.0 t10.10 50
408 189.90 205.70 88

422 117.20 132.60 106

392 103.70 94.60 63

372 114.40 315.30 344

399 152.50 109.00 104

402 178.80 155.20 76

50 44.70 38

60 86.60 108

50 113.70 119

40 94.40 64

10 78.00 56

10 87.10 96

.30 01.80 971

MEAN E 135.87 160.36 119.07 86.61 83 00 142.40
STD. DEV. E 37.83 77.83 101.31 21.82 30 07 57.11

TOTAL MEAN 147.79 180.94 99.74 89.23 100.53 190.10

TOTAL STD. DEV. 35.75 93.58 65.16 23.30 66.04 91.54
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LDH (IU/I)

SUBJECT

376

407

409

397

391

DAY

-3 1 8 14 21 +4

118 50

113 10

140 10

146 50

147 90

133 22

16._8

166 60 95.60 101 20

92 60

123 60

82 20

112 00

101 20

16 47

79 00
81 20

81 3O

118 80

92 30

17 34

66

79

59

123

89 9O

2O

00

9O

3O

130 30

143 40

110 40

128 70

135 88

20 81
MEAN C 83 00

STD. DEV. C 25 01

144 00

110 10

167 90

177 50

176 70

155 42

28 64

390

420

412

385

4O5

394

156 70 83.60 92 40167 70

169 30
128 10

117 50

138 30

105 20

136 61

24 16

125 50

99 60

90 30

10240

116 10

101 96

148 20

134 20

92 00

193 10

106 80

138 50

36 31

118

106

106

106

121

111.30

99.10

98.00

102.20

116.50

73 70

40

30

80

g0

50

MEAN L 101.23 104 43

STD. OEV. L 10.sg 14.14 15 79 15.60

381

408 135

422 113

392 89

372 171

399 143

402 156

184 30 109 70 133 70 125 00 111 20

90 166

10 145

70 109

60 159

00 150

70 139

90 110

40 121

10 86
2O 172

10 119

80 110

90 109
O0 97

O0 85
40 157

20 100

50 111

40 99

40 98

20 85

70 125

80 102

00 113

00

30

30

40

30

90

128 00

155 90

144 90

107 70

138 40

144 80

135 66

151 90

167 60

142 20

133 30

127 00

135 10

155.20

MEAN E 142 04 140 03 121 96 112.36 105 06 144.61

STD. DEV. E 32 89 22 72 26 57 23.53 12 97 14.31

137.72 138.37 108.86 103.25 99.19 144.11

25.05 25.98 20.94 19.60 19.22 19.85
TOTAL MEAN
TOTAL STD. DEV.
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LACTATE (mg/dl)

SUBJECT

376 5

407 7

4O9 10

397 9

391 7

DAY

-3 1 8 14 21 +4

00 9.30 6.20 5

00 16.30 4.60 5

90 11.80 8.20 8

70 6.60 6.30 5

40 7.00 6.30 5

4O

10

00

00

10

5

3

7

2

4

MEAN C 8 00 10.20 6.32 5 72 4

STD. DEV. C 2 33 3.99 1.28 1 28 1

20 10.50

60 7.20

30 13.30

6O

70 10.30

10 10.50

30 15.70

5 8O

7 00

9 00

6 9O

6 5O

5 10

6.4O

6.60

7.60

6.80

7.00

4.70

4.40

4.40

8 20

3 4O
8 10

9 3O

7 70

7 34

2 28

390 9

420 4

412 9

403 12

385 11
405 8

394 4

6

6

8

9

6

6

6

20

B0
30

9O

70

78

66

4O

7O

90

20

9O

4O

4O

5 8O

9 O0

11 10
4 70

4 8O

5 70

5 3O

6 63
2 45

MEAN L 8 54 11.25 6.67 5.93 7 27

STD. DEV. L 3 19 2.91 1.22 1.37 1 23

60 13.30 13

50 10 80 6

20 9 20 4

60 5 90 5

80 12 00 5

00 19 20 6

60 8 60 6

10 11.30

50 5 30

70 3 9O

40 7 20

70 5 10

10 4 60

00 6 50

11

6

5

7

10
4

7

381 9

408 6

422 12

392 8

372 7

399 6

402 7

1 00

8 4O

3 8O

4 8O

4 40

5 5O

3 4O

5 90

2 79

3O

3O

6O

3O

00

8O

10

MEAN E 8 33 11 29 6 79 6 27 7 49

STD. DEV. E 2 09 4 24 2 84 2 48 2 35

TOTAL MEAN 8.32 10.97 6.62 6.00 6.55 6.69

TOTAL STD. DEV. 2.47 3.58 1.89 1.76 2.47 2.09
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GLUCOSE (mCl/dl)

SUBJECT

376 97

407 66

409 106

397 73

391 70

DAY

-3 1 8 14 2

90 83.10 68
30 71.90 84

20 83.00 83

60 79.30 77

40 114.40 80

10

3O

90

10

5O

78.40

90.10

75.00

67.70

32.30

71

76

73

75

90

40

20

3O

O0

70

+4

77.40

53.70

90.90

82.70

75.70

MEAN C 82 88 86.34 78 78 68.70 77 32 76.08

STD. DEV. C 17 93 16.33 6 64 21.90 7 70 13.84

20 73

90 85

30 75

90 81

30 86

50 52

70 65

63 30

76 40

13 70

67 10

28 50

79 90

88 30

73 89

25 99

00 35.5O

40 86.80

30 86.50

00 81.70

70 85.20

90 85.00

60 70.00

390

420

412

403

385

405

394

115.70 75

73.30 84

120.70 88
8O

70.00 85

127.10 87

69.20 71

MEAN L 96.00 81 97 74 27 75.81

STD. DEV. L 27.84 6 36 11 96 18.71

120.10 82
96.00 78

102.00 91

77.60 64

124.20 59

89.50 83

78.80 88

40 82

40 79
30 77

20 73

50 81

10 82

80 93

90 77

20 90

50 88

3O 76

50 82

10 82

80 90

90

70

00

40

50

70

10

381

4O8

422

392

372

399

402

100 70

71 00

136 90

80 80

128 00

68 10

78 60

94 87
27 83

MEAN E 98.31 78 24 81 47 84 04
STD. DEV. E 18.49 12 05 6 35 5 73

TOTAL MEAN 83.98 94.22 79.76 75.46 79.24

TOTAL STD. DEV. 25.32 20.92 8.65 13.96 12.47

75.10

87 10

90 70

77 30

90 80

48 90

45 70

73 66

19 04

81 5O

92 80

115 10

82 80

76 10

84 20

89 90

88 91

12 78

79.92

16.39
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PROTEIN (g/dl )

SUBJECT

376 7

407 7

409 7

397 6

391 6

DAY

-3 1 8 14 21 +4

2O 7

8O 8

90 7

9O 8
3O 6

60 6

00 7

80 7

00 6

50 6

90

3O

7O

9O

4O

7

7

7

7

6

10

20

8O

00

4O

MEAN C 7 22 7 58 7 04 7 10

STD. DEV. C 0 66 0 63 0 49 0 50 0

390 7

420 7

412 7

403 7

385 7

405 7

394 6

40 7.80 7

60 7.70 7

30 7.70 7
30 7

00 7.00 6

10

O0

10

20

80

6 9O

6 8O

7 10

7 00

6 9O

7 00

7 40

7 90

7 20

6 50

7 20

51

7.10

7.00
7.30

7.20

7.10

O0 7.00 6

60 7.00 6

7O

7O

7.20

7.10
6 6O

6 8O

6 87

016

MEAN L 7 17 7.37 6 94 7.14

STD. DEV. L 0 33 0.40 0 21 0.10

70 8.10 7

70 8.10 7

80 7.80 7

80 8.40 7

50 6.70 6

30 7.00 7

70 7.70 7

20 7.30 7

10 7.20 7

70 7.60 7

50 7.40 7
60 6.60 6

00 7.00 7
O0 7.30 7

381 7

408 7

422 7

392 7

372 7

399 7

402 7

20

O0

60

70

90

50

00

7

7

7

5O

5O

70

7 50

6 50

7 34

0 48

7.50

7 30

7 80

8 O0

6 9O

6 60

6 60

7 24

0.56

MEAN E 7 64 7.69 7 16 7.20 7 27
STD. DEV. E 0 18 0.62 0 36 0.32 0 33

TOTAL MEAN 7.36 7.55 7.05 7.05 7.21 7.30

TOTAL STD. DEV. 0.44 0.54 0.35 0.35 0.32 0.51

7 30

7 50

7 70

8 O0

6 20

7 20

7 40

7 33
0 56
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CORT ISOL (ug/dt)

SUBJECT

376 25

407 3

409 16

397 13

391 16

DAY

-3 1 8 4 21

20 15

20 7

20 15

20 14

30 8

50 21.60 14
80 11.80 16

70 15.90 27

O0 14.90 15

30 15.20 17

8O

20

80

10

10

21

18

22

17

18

30

8O

10

6O

9O

MEAN C 14 82 12 26 15.88 18 20 19 74

STD. DEV. C 7 90 3 90 3.56 5 44 1 88

O0 15

60 19
40 16

80 22

60 17

4O 18

40 15

390 11.30 19.30 14.70 23

420 10.50 17.30 17.60 11
412 20.90 18.90 14.80 21

403 13.40 19.50 20

385 14.20 10.00 19.50 17

405 12.50 15.70 19.20 14

394 15.60 15.90 15.60 16

30
00

40

70

70

00

90

MEAN L 14.06 16.18 17.27 17 89 17 86

STD. DEV.L 3.47 3.37 2.21 4 10 2.49

381 15

408 15

422 20

392 13

372 27

399 14

402 5

MEAN E
STD. DEV. E

TOTAL MEAN

TOTAL STD.

40 15.00 16.90 19

70 19.30 16.60 20
60 22.20 18.50 19

10 12.90 6.00 14

70 20.10 23.80 22

20 12.70 13.60 16

30 4.70 10,50 15

20 16.20
60 14.80

40 23.70

70 17.40

60 25.30

90 16.60

70 11.00

16 O0 15.27 15.13 18 44 17.86

6 89 5.94 5.76 2 81 5.01

14.97 14.74 16.12 18.17 18.35

5.87 4.69 4.05 3.86 3.46

+4

20 20

21 10
17 30

19 00

19 20

19 36

1 43

15 40

13 60

18 O0

21 80

15 8O

22 30

12 40

17 04

3 85

16 50

24 00

23 40

20 10

24 90

15 10

16 50

20 07

4 08

18.77

3.59
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ALDOSTERONE (ng/dl)

SUBJECT DAY

376

407

409

397

391

MEAN C

STD. DEV. C

15

12

19

26

6
16

-3 1 8 14 21 +4

60 11

50 19

30 20

20 16

50 12
02 15
38

390

7

30 12.00 11

50 5.80 6

10 18.60 25

50 4.60 9

50 21.30 17

98 12.46 14

99 7.45 7

70

90

90

9O

20
32

48

12

12

25

10

14

14

9 60 8.40 10 60 24 70 8

420 17

412 8

403 8

385 13

405 12

394 13

60 24.10

90 16.80

40

50 5.20

10 10.00

90 19.90

11
13

9

10
10

18

10 18

00 16

50 12

30 7
70 7

30 23

30 16

90 11

60 13

6O 6

10 9

20 11

20

60

10

60

._0
94

82

70

7O

8O

5O

3O

9O
6O

MEAN L 12 00 14.07 11 93 15 77 11 21
STD. DEV. L 3 31 7.34 3 01 7 01 3.37

381 11.00 15

408 17.50 26

422 18.10 15

392 12.60 16

372 11.60 17
"399 16.30 9

402 14.60 18

00 16,30 20

00 11.40 23

20 12.50 15

00 8.00 13

10 16.40 18

90 17.50 17

70 14.60 19

25.70

16.90

15.30

6.30

13.80

15.60

6.96

9 00

22 00

7 10

10 10

9 10

8 5O

12 30

11 16

5 O4

20 16.20 13.70

10 12.00 32.40

70 17.40 9.80

60 18.80 20.50

00 12.70 13.40
40 19.20 11.90

10 15.50 16.10

MEAN E 14.53 16.84 13.81 18.16 15.97 16.83

STD. DEV. 2.87 4.87 3.38 3.08 2.81 7.66

TOTAL MEAN 13.99 15.68 12.76 16.27 13.95 14.42

TOTAL STD. DEV, 4.61 5.43 4.46 5.87 4.33 6.75
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ACTH (mg/ml)

SUBJECT

376

407

409

397

391

DAY

-3 8 14 21

29.00

28.00

92.00

38. O0

26.50

154 O0

26 O0

133 O0

213 O0

45 60

114 32

77 76

39 00

51 00

51 00

65 00

14 60

44 12

18 90

39 O0

45 O0

53 O0

32 O0

24 40

38 68

11 11

55.00

54.00

72.00

42.00

22.90

MEAN C 42.70 49.18

STD. DEV. C 27.92 18.17

÷4

5O O0

44 O0

48 O0

37 O0

33 30

42 46
71,.4

390

420

412

403

385

4O5

394

32.00 30.00 69.00

17.00 7.00 19.00 23

53.00 53.00 61.00 80

29.00 43.00 53

30.80 46.90 40.70 61

25.00 26.80 27.50 39

74.20 73.60 75.50 63

18 O0

59 O0

60 O0

48 O0

79 30

27 2O

74 40

52 27
22 90

33 O0

O0

O0

O0

40

70

20

16 O0

23 O0

52 O0

44 O0

54 5O

53 70

74.00

MEAN L 38.67 38.04 47.96 50 47 45.31

STD. DEV. L 21.12 21.61 21.24 19 73 19.92

53.00 59.00 109 O0

45.00

26 00

53 80

34 90

8 50

37 87

85 00

29 00

75 00

228 00

85 00

12 30

11 90

75 17

74 88

16 00

48 O0

34 00

80 40

35 30

38 70
51 63

10
57

35

69

32

22

32.00

54.00

36.00

52.20

18.30

28.50

74 00

00
00

00

50

7O

10

381
408

422

392

372

399

402

75.00

2.00
33.00

30.00

49.40

35.80

44.30
MEAN E 39.14 42 90 38.50

STD. DEV. E 14.09 18 78 32 01 24.34 22.09

TOTAL MEAN

TOTAL STD. DEV.

77.04 40.37 38.16 47.93 47.34 42.05

63.35 17.06 17.26 26.04 20.32 17.76
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PLASMA RENIN ACTIVITY (ngA1/ml/hr)

SUBJECT DAY

-3 1 8 14 21

376 1.52

407 1 11

409 1 36

397 3 95

391 0 57

0

I

I

0

I

89 1

18 1

42 2

88 2

58 1

2 63

2 74

2 23

2 35

1 26

2 24

0 59

53 1

60 2

24 2

63 1

72 1

35

53

56

88

38

MEAN C. 1 70 1 19 1 94 1 94

STD. DEV. C 1 31 0 31 0 47 0 59

78

91

23

94

83

11

79

0.98 2

0.95 1

0.41 0

1 .42 1

1 .02 1

1.16 1

1.13 1

82 1

31 1

5O 0

93 2

10 1

52 1

14 1

1 19

1 55

0 54

1 86

0 80

1 69

0 87

1 21

0 50

390 0

420 0
412 0

403 0

385 0

405 1

394 0

+4

3 85

3 45

2 19

1 55

1 52

251

1 08

53 1 .97

37 4.77

52 0.37

11 1 .69

25 1 .68

14 1 .43

05 0.84

MEAN L 0 80 1.01 1.47 1 28 1.82

STD. DEV, L 0 28 0.3I 0.74 0 48 1.41

0

2
1

0

0

2

1

26 0,46 0
30 4.33 2

08 1.50 2

91 1.30 1

93 0.90 0

56 2.00 2

48 2.30 1

381 0

408 2

422 3
392 4

372 0

399 2

402 6

70

04

08

69

82
75

g7

35 2.71

32 8.49

11 0.94

44 1.25

77 1 .31

17 2.11

30 1 .23

1 50

3 76

1 39

1 51

1 26

1 55

1 50

1 78

0 88

MEAN E 3 01 1 36 1.83 1 49 2.58

STD. DEV. E 2 22 0 82 1.27 0 75 2.68

TOTAL MEAN 1.85 1.69 1.19 1.73 1.53 2,28

TOTAL STD. DEV. 1.73 0.77 0.55 0.90 0.64 1.86
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AVP (l:)g/ml)

SUBJECT

376

407

409

397

391

DAY

-3 1 8 14 21

4

0

4

2

90
60

40

10

1 .90

0.60

2.00

1 .60

10.10

1.10

15.20

43.20

0.20

0.60

2.50

1 .20

30

90

00

8O

90

1

1

2

1

11.30 1 30 1.30 1.10 0

MEAN C 14.18 2 66 1.48 1.12 1 98 1 48

STD. DEV. C 17.30 1 90 0.56 0.87 1 80 0 53

0

1

1

5

0
0

2

70 0

20 2

8O 4

40 4

60 1

70 0
00 1

0 30
0 70

3 40

2 80

1 20

0 70

1 40
1 50

1 16

390 0

420 0

412 4

403 2

385 2

405 1

394 1

3O 1

10 1

10 2

70 4

30 1

9O

4O

30 0.60

60 1.10

80 4.70

80

80 0.60

00 0.90

70 0.90

MEAN L 2 00 1.47 1 77 2 11
STD. DEV. L 1 58 1.60 1 69 1 66

t 70

2 20

0 70

1 00

0 90

1 30

3 10

1 56

0 85

3

2

1

1

0

1

4

40 3

70 1

9O 2

5O 0

70 0

10 0

9O 4

381 1

408 1

422 2

392 28
372 1

399 1

402 3

70 1

30 1

80 1

70 1

30 0

30 1

3O 3

30

30

40

6O
7O

9O

4O

4O

2O

5O

6O

8O

3O

3O

47

70

00

30

10

30

3O

70

50

6O

40

1 30

2 00

2 11

1 18

1 70

1 40

0 80

1 3O

0 70

1 3O

3 20

1 49

0 83

MEAN E 5 77 1 59 2 31 1 94
STD. DEV. E 10 14 0 80 1 47 1

TOTAL MEAN 6.59 1.84 1.52 1.80 2.02 1.72

TOTAL STD. DEV. 11.23 1.45 0.87 1.44 1.54 0.92
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NOREPINEPHRINE (pglml)

SUBJECT DAY

-3 1 8 14 21 +4

376 328.00 595.00 169.00 59.00 161.00 856.00

407 220.00 341.00 99.00 67.00 92.00 336.00

409 275.00 341.00 111.00 251.00 171.00 273.00

397 308.00 514.00 248.00 191.00 352.00 612.00

391 456.00 336.00 202.00 155.00 142.00 326.00

MEAN C 317.40 425.40 165.80 144.60 183.60 480.60

STD. DEV. C 87.60 121.30 62.34 82.05 98.93 248.04

390 289

420 514

412 338

403 364

385 245

405 160

394 356

00 294

00 401

00 383

00 448

00 300

O0 172

00 289

00 59

00 178

00 160

00 145

00 82

00 119

00 97

O0 130.00

00 157.00 179

00 85.00 169

00 56.00 129

00 92.00 116

O0 32.00 26

O0 121.00 98

O0

00

00

00

00

O0

MEAN L 323 71 326 71 120 O0 96.14 119 50

STD. DEV. L 110 52 91.78 43 37 43.46 55 31

381 127

408 247

422 320

392 162

372 328

399 329

402 165

00 250

O0 405

O0 330

O0 338

O0 247

00 353

00 202

00 26

00 106

00 231

00 111

00 134

O0 308

00 97

O0 57

00 107

O0 294

00 110

00 35

O0 264

00 91

00 62:00

00 62.00

O0 204.00

00 67.00

00 176.00

00

00 65.00

MEAN E 239 71 303 57 144 71 136 86 106.00

STD. DEV. E 88 12 71 88 94 19 101 10 65.69

TOTAL MEAN 291.11 344.16 141.16 123.89 133.59

TOTAL STD. DEV. 99.99 101.94 69.25 77.57 76.77

350 00

626 00

396 00

389 00

306 O0

119 00

344 00

361 43

149 57

238 00

208 O0

442 00

194 O0

291 00
522 O0

241 O0

305 14

126 73

372.05

177.60
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EPINEPHRINE (pg/ml)

SUBJECT

376
407 38

409 56

397 554

391 13

DAY

-3 1 8 14 21 +4

40 00 51 O0 34 00 24.00 44 00

00 24

00 15

00 42

00 22

O0 50

00 44

00 70

00 73

24 00

28 O0

57 00

18.00

34 20

15 97

33

39

78

39

47

17

00 26.00

00 42.00

00 37.00

O0 33.00

MEAN C 140 20 57 60 27 40 32.40

STD. DEV C 231 83 13 01 10 62 7.50

390 16.00 10 00 15 00

48 O0

00

00

00

.00

40,
92

420 13.00

412 41.00

403 29.00

385 32.00

405 34.00

394 3.00

22 O0 11 O0 15
00 111

00 45

00 16

00 9

00 3

39 00

21 00

18 00

27 00

12 00

49

26

14

8

27

79 O0

133 O0

24 O0

32 O0

11 00

50 17

46 98

O0 7 O0
O0

O0

O0

O0

O0

17 .00

54. O0

29.00

28.00

80. O0

41.00

MEAN L 24.00 19.71 22 00 31 83 41.60

STD. DEV. L 13.56 10.48 13 71 41 62 22.70

381

4O8

422

392

372

399

402

MEAN E
STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

47 O0

21 00

39 00

93 00

24 00

11 00

35 00
38 57

26 86

66 O0

50 O0

47 O0

39 O0

55 00

42 O0

44 00
49 00

9 17

34.00

23.00

27.00

21 .00

14.00

63.00
30.33

17.32

28 00

18 O0

24 O0

37 00

34 00

12 O0

41 00

27 71

10 47

29.00

18.00

25.00

17.00

39.00

51 .00

29.83

13.12

48 00

32

32

33

21

3O

29.00

00

00

00

00

00

32. 14

59.95

121.30

51 .78

27.07

25.39

13.29

26.84

11 .39

31 .82

25.73

8.07

39.50
17.10
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Appendix F
T ILT STUDY

VARIABLE

SODIUM

POTASSIUM

OSMOLALITY

CPK

LDH

LACTATE

GLUCOSE

PROTEIN

CORTISOL

ALDOSTERONE

ACTH

PLASMA RENIN ACTIVITY

AVP

NOREPINEPHRINE

EPINEPHRINE

HEART RATE

PAGE

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

159



SODIUM (mEq/I)

SUBJECT Pre Bedrest 30th day
pre-t i I t post-ti I t pre-t i It

of Bedrest
DOSt-tilt

376 138.30 137.60 137

407 138.80 138.80 136

409 135.70 135.20 135

397 138.90 138.80 137

391 135.60 135.60 138

00 137.00

50 137.00

70 134.90

O0 137.00

50 138.80
136.94MEAN C 137.46 137.20 136 94

STD. DEV. C 1.67 1.72 1 02 1.38

390 139.00 139

420 139 20 138

412 141 60 141

403 139 90 138

385 140 30 141

405 138 10 137

394 135 80 135

MEAN L 139

STD. DEV. L 1

13 139

84 2

381 138.20 138

408 137.60 138

422 139.40 140

392 138.20 137

372 138.90 139

399 135.80 139

402 135.00 135

MEAN E 137.59 138

STD. DEV. E 1.61 1

TOTAL MEAN 138.12

TOTAL STD. DEV. 1.80

20 137

80 136

60 137

10 135

80 140

70 137

9O 137

01 137

11 I

80 137.80

20 136.10

00 137.00

80 135.60

00 138.80

60 138.70

80 137.40

46 137.34

37 1 .22

.50 136

.60 136

.10 136

.70 135

.60 137

.50 138

.50 139

.50 137

.55 1

20

80

90

90

30

40

O0
21

13

138.35

1.87

137.23

1.15

137 00

136 80

137 40

135 30

138 00

138 50

139 10
137 44

1 25

137.27

1.22
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POTASSIUM (mEQ/I)

SUBJECT Pre Bedrest

pre-ti It post-tilt

30th day

pre-tilt

376

407

409

397

391

MEAN C

STD. DEV. C

4.38 4. 18
3 64 3.66

4 28 4.84

3 73 3.90

4 43 4.37

0

09 4.19

38 0.45

4

4
4

3

4

4

43

23
24

78

41

22

26

390

420

412

403

385

405

394

MEAN L

STD. OEV. L

3

3

4
4

4

4

3
4

0

81 3.82
98 3.87

14 4.21
33 4.63

11 4.10

12 4.05

67 3.75

02 4.06

22 0.30

3.79

4.01

4.08
3.94

4.21

4.09

3.80

3.99

0.16

381

408

422

392

372

399

402

MEAN E

STD. DEV. E

3

4

4

4

4

4

4

4

0

88

15

O0

12

10

20

02

07

11

3 88

4 56

4 16

4 12

421

451
4 03

421

0 25

3

3

3

4

3

4

4

4

0

77

98

99

27

97

3O

26

08

2O

TOTAL MEAN

TOTAL STD. DEV.

4.06

0.23

4.15

0.32

4.08

0.21

of Bedrest

post-tilt

4.57

4.61

4.04
3.79

4.49

4.30

0.36

3 84
4 06

4 O3

3 98

4 27

421

3 77

4 02

0 18

3.91

4.22

3.91

4.27

4.08
4.32

4.17

4.13
0.17

4.13

0.25
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SUBJECT

376
407

409

397

391

MEAN C

STD. DEV. C

390

420

412

403

385

4O5

394

MEAN L

STD. DEV. L

381

408

422

392

372
399

402

MEAN E

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

OSMOLALITY

Pre Bedrest

pre-t i It post-tl

(mosm/kg)

30th clay

pre-t i I t

285.00 287

292.00 294
286.00 286

289.00 291

289.00 284

288.20 288

2.77 4

O0

O0

O0

O0

O0

40

04

291

294
290

290

288

290

O0

O0

O0

O0

O0

60

19

284 O0

288 O0

293 O0

289 O0

275 O0

290 O0

286.00

286.43

5.80

289

291

294

288

287

291

289

289

2

O0

O0

O0

O0

O0

O0

O0

.86

.34

292

292

292

288

295

291

289

291

2

O0

O0

O0

O0

O0

O0

O0

29

29

286

291

289

286

282
283

287

286

.00

O0

O0

O0

O0

O0

O0

29

315

286.84
4.11

286.00

292.00

289.00

289.00

284.00

285.00

284.00

287.00

3.06

293.00

294.00

294.00

295 O0

287 O0

294 O0

295 O0

293

2

14

79

288.42
3.19

291.79
2.57

of BeOrest

post-tilt

290 O0

293 O0

290 O0

292 O0

291 O0

291 2O

1 3O

290 O0

290 O0

293 O0

289 O0

294 O0

293 O0

290 O0

291 29
1 98

292 O0

284 O0

293 O0

290 O0

292 O0

294 O0

293 O0
291 14

3 39

291.21

2.35
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SUBJECT

376

407
409

397

_91
MEAN C

STD. DEV. C

390

420

412

403

385

4O5

394

MEAN L

STD. DEV. L

381

408

422

392

372

399

402

MEAN E

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

CPK [ I U/ I )

Pre Bedrest

pre-ti It post-ti It

30th day

#re-tilt

94 00 80

137 90 144

172 50 197
8 18 83

55 60 60
93

65

64 113

05 56

90

9O
8O

3O

40

46

76

91

105

105

37

68

81

28

9O

2O

6O

7O

5O

78

89

141

86

98

225

209

269

159

169

67

90 153

00 84

20 106

60 220
20 192

50 232

40 160

97 164

87 55

5O

90

9O
00

8O

3O

70

44

18

410.10

85.40

94.10

106.30

89.70

195.40

86.90

152.56

120.06

121

136
103

43

58
160

136

108

43

70 127

30 162
90 109

8O 55

40 62

10 166

70 145

70 118
05 45

50

30

20

70

90

50

60

53

02

51

76
95

81

57
123

134

88

31

3O

2O
2O

10

10

10

10

30

35

127.31
65.20

134.11

54.56

110.26

80.17

of Bedrest

post-tilt

91 2O

130 6O
141 40

49 80

77 40

98 08

37 88

122 40

85 40

95 60
110 70

90 10

208 30

87 60

114 30

43 59

72 60

91 50
63 50

89 40

56 40

125 40

116 70

87 93
26 05

100.32

36.27
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SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390

420

412
403

385

4O5
394

MEAN L

STD. DEV. L

381

408

422

392

372

399

402

MEAN E

STD. DEV.

TOTAL MEAN

TOTAL STD.

LDH (IU/)

Pre Bedrest

pre-ti It post-ti It

30th day

pre-tilt

120

98

137

93

105

110

17

70 101

30 104

10 206

40 99

20 126

94 127

89 45

5O

40

6O

O0

2O

54

50

110

100

78

103

122

103

t6

2O

80

40

60

90

18

26

143

142

88

182

120

118

97

127
31

90 150

40 145

20 109

O0 170

90 121

50 130

90 98

69 128
64 27

90

20

40

30

60

10

80
47

29

105

120

113

93

98

120

117

107

8O

10

5O

7O

6O

70

8O

46

97

132.64

118.40

112.20

78.80

128.30

153.70

190.90

130.63

34.99

135

170

133

87

144

153

200

146

35

3O

8O

40

10

20

40

60

40

11

119

90

106

98

149
114

t70

121

28

8O

5O

5O

6O

O0
8O

2O

34

54

DEV.

124.36

29.71

134.83

34.67

111.45

20.65

of Bedrest

post-tilt

155 80

192 30

109 50

110 50

160 90

145 8O

35 55

120 10

126 50

120 30

87 10

88 60

109 50
113 90

109 43

15 68

136 50

151 40

98 30

113 O0

153 30
113 80

130 20

128 07
20 71

125.87

26.89
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SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390

420

412

403

385

4O5

394

MEAN L
STD. DEV. L

381

408

422

392

372

399
_.02

MEAN E

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

LACTATE (mgtd I)

Pre Bedrest

pre-ti It post-tilt

30th day of Bedrest

pre-ti It Postrest

4.30 3.90

4.70 5.20

4.40 5.10

3.90 3.60

4.30 4.10

4.90

4.90

5.80

3.50

5.60
4.32 4.38 4.94
0.29 0.73 0.90

6 50

5 70

6 70

4 10

610

5 82

1 04

5

6

5

4

4

6

2

4, .

1 ,

30

20

90

80

20

10

40

99

35

5.80

6 70

6 O0

6 40
4 5O

5 8O

1 8O
5 29

1 .69

7

6

6

10
4

4

5
6

2

50

50

20

O0

4,0

20

10

27

03

8

6

6

10
4

4

5

O0

80

40

20

80

70

30
60

98

,

7

3

5

6

5
4

5

9O

10

6O

3O

20

70

70

36

13

4 50

6 60
3 60

5 30

6 60

4 40

4 60

5 09

1 15

6 2O

6 2O

4 5O

5 O0

4 5O

5 5O
6.40

5.47
0.82

6 40

7 60
5 O0

5 70

5 30

5 3O

6 4O

5 96
0 91

4.95

1.11

4.97

1 .28
5.63
1 .44

6.16
1 .39
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SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390
420

412

403

385

405

394

MEAN L

STD. DEV. L

381

408
422

392

372
399

402

MEAN E
STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

GLUCOSE (mg/cll)

Pre Bedrest

pre-t i It post-tilt

30th day

ore-tilt

85

81

81

83

79

82
2

40 88.00

6O 80.4O

70 87.00

60 85.90

70 83.50

40 84.96

17 3.05

83.20

83.80
92.70

83.00

80.90

84.72

4.59

83

82

79

78

77

88

63

78

30 82.80

10 83.30

10 78.70

60 71.20

40 77.50

60 92.10

50 71.10

94 79.53

78 7.40

82.60

42.30

90.50

84.40

92.80

91 .20

68.70

78.93

18.10

88

84

87

82

98

63

85

84

10

81
7

00

10

30

20

30

9O

90

24
34

95 30

97 70

89 00

80 90

91 30

82 70

88 60

89 36
6 13

79

105

86

82

87

83

96

88

20

8O

6O

70

4O

8O

4O

84
2O

.81

.90

84

7

.58

.19
84
12

.11

.70

of Bedrest

post-tilt

78 70

87 00

98 60

91 00

73 40

85 74

9 96

83 70

108 50
89 10

88 30
93 80

81 8O

73 00

88 31

11 08

77 50

102 50

88 80

89 90

93 90

87 70

106 60

92 41
9 74

89.15

10.11

166



SUBJECT

376

407
409

397

391

MEAN C

STD. DEV. C

390
420

412

4O3

385

405

394

MEAN L

STD. DEV. L

381

408
422

392

372

399

402

MEAN E

STD. DEV.

TOTAL MEAN

TOTAL STD.

PROTEIN (g/dl)

Pre Bedrest

_re-ti it post-ti I t

30tn day

pre-tilt

6

6
6

6

6

6

80 6.70

90 7.20
90 6.70

50 6.60

40 6.40

70 6.72

23 0.29

7 10

7 60

7 90

6 90

6 30

7 16

0 62

7

6

6

6

6
7

7

6

0

40

80

80

90

O0

20

00

87

44

7 40

7 O0

6 80

7 50

5 90

7 30

6 90

6 97

0 54

7

7

7

7

6

6
6

7

0

8O

10

10

6O

70

5O

5O

04

52

6
7

7

7

6

7

7

90

10
80

40

30

O0

30

11

47

7 00

7 20

7 90
7 30

6 60

6 90

7 20

7 16

0 40

7

7

7

7

6

7

7

0

30

20
50

70

20

00

80

24

54

DEV.

6.92

0.42

6.97

0.45

7.16

0.53

of Beclr est

i3ost-t i I t

7.30

7.60

8.10

7.60

6.40

7.40

0.63

7 50

7 20

7 20

8 O0
6 90

6 60

6 6O

7 14

0 5O

7 40

7 30

7 50

7 90

6 20

7 00

7 40

7 24

0 53

167



SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390

420

412

403

385

405

394

MEAN L

STD. DEV. L

381

408

422

392

372

399

402

MEAN E

STD. DEV.

TOTAL MEAN

TOTAL STD. DEV.

CORTISOL (ug/dl)

Pre Bedrest

pre-ti It post-tilt

30th day

pre-tilt

23

10

13

15

11

14

5

30 23

40 8

50 12

50 19

60 15

86 15

10 5

4O

5O

30

70

20

82
89

15

4

11

17

11

12

4

50

30

60

20

60

04

97

10

15

16

15

8

6

14

12

3

60

00

40

6O

60

40

20

40

87

10.40

7.50

15.00

19.20

9.80

5.30

13.60
11 .54

4.73

12.60

15.50

16.60

16.70

11 .40

9.10

10.50

13.20

3.08

10.80

16.20

23.80

7.10

25.80

12.50

7.30

14.79
7.54

9

15

22

7

25

12

8

14

50

10

70

40

00
60

20

36

O3

12

17

14

8

28

14

11

15

6

.50

3O

00
7O

4O
O0

5O

.20

.39

13.93

5.58
13.71

5.91
13.63

4.90

of Bedrest

post-tilt

14 30

5 60

9 70

15 90

10 20

11 14

4 07

13 30

10 10

15 70

15 10

9 50

9 40

9 20
11 76

2 86

11 80

16 80

13 3O

10 00

29 4O

14 80

12 00

15 44

6 54

12.95

4.95

]68



SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390

420

412
403

385

405

394

MEAN L

STD. DEV. L

381

4O8

422

392

372

399

402

MEAN E

STD. DEV. E

TOTAL MEAN
TOTAL STD. DEV.

ALDOSTERONE (ng/dl)

Pre Bedrest

pre-ti It post-ti It

30th day

pre-tilt

26

2
13

6

10

11

9

10 23

90 3

80 11

00 7

00 10

76 11

01 7

10

3O

6O

10

6O

14
44

6 80

8 80

19 O0

5 80

8 80

9 84

5 28

4

6

11
9

4

4

11

7

3

70
80

60

20

90

30

40

56
17

5 50
6 10

11 80

11 10

4 6O

4 50

11 90

7 93

3 49

4 20
8 90

9 60

5 00

4 3O

3 6O

8 4O

6 29

2.56

9

10

9

2

5

6

7

.80

.20

.50

.80

.30

.70

.90

8.30

9.70

9.60

3.30

4.00

6.80

8.10

10

9

6

4

8

6

6.

40

40

60

30

10

10

90

7.46 7.11 7.40

2.72

8.63

5.25

2.57

8.47

4.62

2.07

7.63

3.45

of Beclr est

Dost-t i I t

7 90

10 40

15 40

5 8O

10 30

9 96

3 59

510

11 4O

9 O0

4 5O
4 8O

4 2O

8 00

671

2 78

9 20

10 40

5 80

5 80

8 90

5 50

9 40

7 86

2 07

7.99

2.93
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SUBJECT

376
407

409

397

391
MEAN C

STD. DEV. C

390

420

412

403

385

405

394

MEAN L

STD. DEV. L

381

4O8

422

392

372

399

402

MEAN E

STD. DEV.

TOTAL MEAN

TOTAL STD. DEV.

ACTH (pg/m)

Pre Bedrest

pre-ti It post-tilt

30th day of Bedrest

pre-ti I t post-tilt

57
55

62

47

24

49
14

00 47

00 53

00 58

00 49

30 25

06 46

86 12

00
00

00

00

20

44

60

17 00

53 00

47 00

31 00

15 6O

32 72

17 02

23

64

81

38

29

47

24

O0

O0

O0

O0

O0

O0

63

28

36

55

69

27

3

49

38

21

00 30.00

00 36.00

00 60.00

00 44.00

30 31.10

60 14.50

90 58.10

40 39.10

57 16.24

22.00

31 .00

24 00

29 70

19 20

49 10

29 17

10 76

40

11

43

44

3O

28

56

36

14

00

00

00

00

6O

6O

90

30

57

42

16

34

52

55

12

24

33

16

00 49

00 26

00 47

00 89

60 71

40 21

70 31

81 47

99 24

00

00

00

00

10

7O

6O

91

70

28

14

28

9

65

19

26

27

18

O0

O0

O0

O0

40

70

70

26

36

50

50

34
186

95

24

25

66

57

00

00

00
00

20

60

20

43

97

39.52

18.41

44.28

18.53

29.41

t5.04
50.22

38.81
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SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390
420

412

403

385

405

394

MEAN L

STD. DEV. L

381

4O8

422
392

372

399

402

MEAN E

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV,

PLASMA RENIN ACTIVITY (ngA1/ml/hr)

Pre Bedrest 30th day of Bedrest

pre-ti It post-tilt pre-ti It post-t i I t

0.86 0.81

0.61 0.63

0.60 0.47

0. 14 0.43

0.40 0.78

0 93

2 63

1 90

1 95

1 05

1 69

70
0.52 0.62

0,27 0. 17 0

1 12

4 4O

2 65

261
1 29

241
1 32

0

0

0

0

0

0

0

24 0 20

47 0 52

32 0 20
88 0 89

48 0 34

28 0 31

81 0.73

50 0.46

0

0

0

0

0

0.56

1.62

.39
70

87

98

81

0

25 0.27 0

85

39

0 90

1 30

051
3 47

1 32

1 O0

0 96

1 35

0 97

0

1
0

0

0

0

0

0

0

63

O3
94

07

18

5O

69

58

36

0 68

1 02

0 85

0 12

0 15

0 49

0 80

0 59

0.35

1

1

1
0

1

1

1

0

38

42

22
42

01

54

16

16

37

2 26

1 70
1 51

0 ,.B9

1 95

0 95

1 75

1 53

0 58

0.53
0.29

0.55

0.28

1.19

0.57

1 .70
1 .01
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AVP (pg/ml)

SUBJECT Pre Bedrest

pre-ti It post-ti It

30th day of Bedrest

ore-ti I t post-ti It

376

407

409

397

391

MEAN C

STD. DEV. C

1 90

1 70

7 40

3 00

1 10

3 02

2 54

3 90

1 20

2 9O

4 6O

1 50

2 82

1 48

0 50

0 30

1 20

1 10

0 40

0 70

420

0 4O

0 5O

4 6O

2 10

0 3O

1 58

1 84

390

420

412

403

385

405
394

MEAN L

STD. DEV. L

0 2O

0 5O

1 90

2 30

0 40

1 00

1 40

1 10

0 8O

0 20

0

1

3

0

0

1

1 30

2 20

0 80

0 70

1 20

2 3O

1 24

0 78

0 50

50

30

8O

70

60

3O

24

18

0 8O

0 5O

5 3O

8 00

0 90

0 6O

27 40

4 28

7 69

381

4O8

422

392

372

399
402

MEAN E

STD. DEV. E

2 90

1 50

1 20

1 30

0 70
1 10

1 00

1 39

071

3.10

0 00

1 30

2 50

1 80

1 50
1 40

1 66

0.98

1 30

0 50

0 90

0 60

0 90

0 40

0 50
0 73

0 32

5 20

2 00

1 10

22 10

2 20

0 30

1 00

4 49
751

TOTAL MEAN

TOTAL STD. DEV.

1 .71

1 .58

1 .81

1.19

0.91

0.78

4.46

7.52
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SUBJECT

376

407

409

397

391

MEAN C

STD. DEV. C

390

420

412

403

385

405

394

MEAN L

STD. DEV. L

381

408

422

392

372

399

402

MEAN E
ST D. DEV.

TOTAL MEAN

TOTAL STD.

NOREPtNEPHRINE (Dg/ml)

Pre Bedrest

pre-ti It post-ti t

30th day

pre-tilt

174

38

87

142

181

124

60

O0 564

O0 170

O0 230

O0 245

O0 315

40 304

90 153

O0 124.00

O0 164.00

O0 103.00

O0 84.00

O0 106.00

80 116.20

81 30.25

70

119

75

303

75

22

189

121

95

O0 226.00 70.00

O0 308.00

O0 337.00 132.00

O0 351.00 143.00

O0 222.00 48.00

O0 134.00 84.00

O0 464.00 90.00

86 291.71 94.50

20 107.68 36.47

97

166

207

55

130

368

57

154

109

O0 71.00

O0 328.00 101.00
O0 464.00 185 O0

O0 225.00 40 O0

O0 266.00 116 O0

O0 429.00 225 O0

O0 163.00 106 O0

29 312.50 120
38 117.42 64

57
06

DEV.

134.47

89.87

302.28

117.47

110.67

46.87

of Bedrest

post-tilt

483 O0

372 O0

418 O0

381 O0

418 O0

414 40

43 72

219 O0

472 O0

427 O0

438 O0
293 O0

207 O0

356 O0

344 67

107 43

508 O0

442 O0

509 O0

55 O0

552 O0

515 O0

277 O0

408 29

180 42

386.42

127.31
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EPINEPHRINE (Dg/ml)

SUBJECT Pre Bedrest

pre-ti It post-tilt

30th day

Dre-tilt

376

407

409

397

391

MEAN C

STD. DEV. C

22

19

27

18

26

22

4

O0

O0

O0

O0

O0

40

04

61 00

35 00

31 00
48 00

39 00

42 80

11 97

27.

22.

43.

32.
23.

29.

,

O0

O0

O0

O0

O0

40

56

39O

420
412

403

385
405

394

MEAN L

STD. DEV. L

6

13

14

5O

24

18

8

19

14

O0

O0

O0

O0

O0

O0

O0

O0

93

41 00

11 00
21 00

21 O0

16 O0

28 O0

24 O0

23 14

9 58

47.

42.

64

23

3O

14

36

18

00

O0

O0

O0

O0

O0

67

04

381

408

422

392
372

399

402

MEAN E

STD. DEV. E

25

16

51

15
21

14

33

25

13

O0

O0

O0

O0
O0

O0

O0

O0

28

0 00

45 00

87 00

33 00

86 00

22 00
33 00

43 71

32 34

31

71

43

31
41

19
81

45

22

O0

O0

O0

O0

O0

O0

O0

29

58

TOTAL MEAN

TOTAL STD. DEV.

22.11

11 .99

35.89

22.61

38.00

18.36

of Bedrest

post-tilt

83 00

53 00

215 00
113 00

62 00

105 2O

65 58

25 00
57 00

154 O0

40 00

59 00

199 O0

89 00

70 30

65 00

96 00

59 00
37 00

48 00

28 00

105 00

62 57

28 86

83.22

55.59
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HEART RATE (b/rain)

SUBJECT Pre Bedrest

pre-tilt post-tilt

30th day of

pre-tilt

376

407

409

397

391

MEAN C

STD. DEV. C

56.00 69.00

64.00 83.00

59.00 61.00

66.00 77.00

65.00 94.00

69

69

72

84

58

62.00 76.80 7O

4.30 12.70

00

00

00

O0

O0

40

29

390

420

412

403

385

405

394

MEAN L

STD. DEV. L

54

60

56

43

45

59

54

53

00 66.00

00 75.00

00 65.00

00 50 00

00 54 00

00 70 00

00 72 00

O0 64

58 9

57

31

65.00

68.00

60.00

53.00
48.00

61.00

58.00

59.00

6.83

381

408

422

392
372

399

402

MEAN E

STD. DEV. E

54.00 64

67 00 75

60 00 70

61 00 64

57 00 80

53 00 61

68 00 86

6O

5

O0 71

89 9

O0

O0

O0

O0

O0

O0

O0

43

31

56

82

69
75

57
63

66

66

9

.00

O0

O0

O0

O0

O0

O0

86

41

TOTAL MEAN

TOTAL STD. OEV.
57.95

6.77
64.89

9.36

Bedrest

post-tilt

91 00

107 00

116 00

107 00

68 00

97 B0

18 94

99 00

96 00

85 00

136 00
84 00

93 00

78 00

95 86

19 18

80.00

100.00

100.00

110.00

112.00

81.00
70.00

93.29

16.28

95.42

17.15
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Appendix G

EXERCISE STUDY

VARIABLE

SODIUM

POTASSIUM

OSMOLALITY

CPK

LDH

LACTATES

GLUCOSE

PROTEIN

CORTISOL

ALDOSTERONE

ACTH

PLASMA RENIN ACTIVITY

AVP

,

NOREPINEPHRINE

EPINEPHRINE

HEART RATE

SYSTOLIC

DIASTOLIC

HEMATOCRIT

HEMOGLOBIN

PAGE

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

, 177



SUBJECT

-4

SODIUM (mEQ/I)

DAY

+4 +27

pre post pre post pre post

376 138.60

407 138.90

409 136.80
397 137.70

391 139,20

MEAN C 138.24

STD. DEV. C 0.98 1.08 1.19

38.70 136.80 136.80

38.50 136.20 137.60

36.70 137.00 137.40

37.60 139.30 t40.30

39.50 136.90 137.50,
38.20 137.24 137.92

1 .37

36.10

36.20

35.70

38.20

36.80

36.60

0.98

36.10

36.50

35,30

37.90

37.40

36.64

1 .03

390 138.70 138.50 138.10

•420 137.60 138.50 136.30

412 137.90 140.70 136.20

403 139 30 139.60 140.10

385 136 90 135.90 138.30
405

394

36

37

37

39

38

30

60
70

90

30

134

136

135

136

138

60

O0

50

40

10
134
137

40 135.20 138.10
20 141.20 137.00

38
38

90
I0

t38 80
136.60
136.57

135 40

136 4O

I37 20

136 70

139 20

139 50
137.90
137.47MEAN L 137 43 138.51 137.73 138 11

STD. DEV. L 1 57 2.27 1.36 1 12 1.45 1.49

80 139.40 137

00 137.50 140

90 137.00 137
90 137.70 137

10 135.50 136

60 136.20 139
50 136.30 139

10 136 80

10 139 70

40 138 50
30 136 O0

50 138 50

20 139 10
20 139.40

137

135

136
135

138
138

135

10 136.60
20 136.20

40 138.40

30 135.70

20 138.30
40 137.80

50 137.60

381 137

408 138

422 138
392 136

372 134

399 134
402 135

MEAN E 136 54 137.09 138 11 138.29 136 59 137.23

36 1.38 1 35 1.06STD. DEV. E 1.84 1.28 1

TOTAL MEAN 137.32 137.91 137.74 138.13 136.58 137.16

TOTAL STD, DEV, 1,62 1,72 1,29 1,22 1,24 1,21

1'78



SUBJECT

pre

POTASSIUM

-4

post

(mEa/I)

DAY
+4

pre post pre

+27

post

376 4.79 4.66 4
407 4.86 4.52 3

409 4.80 4,68 4
397 4.11 4.26 3

391 4.48 4.65 4

37 4.42 4
83 3.88 3

19 3.92 4
98 4.01 3

11 4.09 4

24

96

63

94

18

0.32 0.17 0

MEAN C 4.61 4.53 4 10 4.06 4 19

STD. DEV. C 0.22 0 2821

'390 4

420 4
412 4

403 4

385 4

405 4

394 4

30

57

60
63

29

30

28

4.05

3 89

4 37
4 33

4 24

4 40

4 69

4 28

3.94 4

3.88 3

4.03 4
4.32 4

4.16 3

4.03 4

4.36 4

4 47

401

4 35

4 O6

4 22

4 22

0 19

3.79

4.01
4.12

4 24

4 07

421
4 05

4 07

0 1F,

20 3.96

98 4.03

67 4.31

83 3.95

86 3.86

06 4.06

35 4.30

STD. DEV. L 0

MEAN L 4 42 4.10 4 28 4.07

17 0.26 0.18 0 36 0.17

4.07 4.26 4.16 4.27

0.33 0.33 0.27 0.25
_EAH E 4.39
STD. DEV. E 0.23

381 4.47 4.37 4.18 4.33 4.46 4.19

408 4.36 4.45 3.92 4.29 3.98 4.16

422 4.76 3.95 4.15 4.33 4.37 4.78

392 4.58 4 76 4.47 4.85 4.27 4.34

372 4.24 4 36 4.35 4.27 4.36 4.27

399 4.09 4 03 3.46 3.83 3.81 4.14
402 4.26 4 17 3.97 3.95 3.86 4.00

4 31

0 28

TOTAL MEAN 4.46 4.36 4,08 4,15 4.21 4.18
TOTAL STD. DEV. 0.24 0.26 0.23 0.26 0.30 0.22
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SUBJECT

pre

OSMOLALITY

-4

post

(mosm/kg)

DAY

+4

pre post pre

+27

post

376
407

409

397

391

MEAN C

STD. DEV.

"390
420

412

403

385

405

394

C

289.00

290.00

286.00

292.00
287.00

288,8O
2.39

288

290

289
289

284

288

2

O0
O0

O0

O0

O0
O0

292.00 290.00 289

294.00 291.00 286

293.00 293.00 288
294.00 291.00 294

291.00 290.00 291

292.80 291.00 289

35 1.30 1.22 3

O0

O0

O0

O0

O0

6O

O5

286

290

293
289

290

284

289

.00 291.00

00 295.00

O0 298.00

00 294.00

00 291.00

00 288.00

00 287.00

290.00 288.00 281.00

289.00 291.00 287.00

290.00 292.00 294.00

294.00 296.00 290.00
291.00 291.00 295.00

288.00 287.00 296.00

283.00 288.00 295.00

286.00
289.00

286.00

294.00

295.00

290.00
4.30

287.00

290.00

294.00

291.00
297.00

298.00

294.00

MEAN
STD. DEV. L

381

4O8
422

392

372

399

4O2

MEAN E

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

288.71 292.00

2.93 3.92

289.29 290 43 291.14
3.35 3.10 5.52

289.00 292.00
291 O0 289 O0

291 00 291 00

295 00 290 O0

287 O0 289 00

289 O0 290 00

293 O0 290 00

292.00 287.00

300.00 290 O0

292.OO 29O 00

289.00 285 00

285.00 291 00
289.00 292 O0

290.00 294 00

290 71 290 14 291.00 289 86

2 69 1 07 4.62 3 02

293.00
297 O0

296 00

286 O0

285 00

288 00

291 00

290 86

4 74

289.47 290.26 290.84 290.74 290.26

2.74 3.05 3.64 3.33 3.97

293.00
3.92

291.00

290 00

290 00

285 00

294 00
293 00

296 00

291 29

3 55

291.58

3.86
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SUBJECT

CPK (lUll)

DAY
-4 +4 +27

pre post pre post pre post

376
407

409

397

391

MEAN C

STD. DEV. C

129.40 150.70 70.50 70.40 52.80 57.10

179.60 211 90 135.10 126.80 118.40 77.00

169.90 194 20 155.40 90.80 183.60 121.20

94.60 72 40 79.30 t15.70 64.00 67.60

109.90 113 30 43.30 40.90 57.50 66.20
136.68 148 50 96.72 88.92 95.26 77.82

37.04 57 32 46.80 34.66 56.00 25.26

"390 150.00

420 220.30

412 166.90

403 198.60

385 144.60

405 219.90

394 104.80

125.60

225.90

224 30

155 20

155 20

227 80

114 70

175 67

167
154

178

111

146

206

92

STD. DEV. L 43.03 49.61

20 193.00 118

70 127.80 115

O0 183.90 99

70 154.70 119

10 139.80 84

40 254.30 166

30 110.70 111

9O

8O

3O

8O

00

4O

9O

134 00

159 70

113 80
81 7O

84 20

186 40
104.00-

MEAN L 172.16 150 91 166.31 116 69 123.40
38,92 48.61 25.43 39.04

40 83.30 73.10
40 92.50 125.20

00 52.90 139.00

10 70.90 98.80

20 72.50 76.60

60 99.00 I04.00
60 112.60 136.60

381 1t3.50 120.00 76.50 92

408 180.80 183.30 176.10 459

422 148.00 186.30 138.70 108

392 116.40 121.60 95.90 87

372 99.30 123.70 3102.50 3469

399 138.70 148.10 103.10 i14
402 113.80 174.80 114.50 80

MEAN E 130.07 151.11 543.90 630 19 83.39 107.61
STD. DEV. E 27.82 30.10 1128.70 1259 22 19.93 27.01

TOTAL MEAN 147.32 159.47 281.44 316.85 98.74 105.59

TOTAL STD. DEV. 39.59 44.89 684.50 768.78 35.55 35.10
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SUBJECT

LDH (IU/I}

DAY

-4 +4 +27

pre post pre post pre post

376

407

409

397

391

MEAN ¢
STD. DEV.

390

420

412
403

385

405

394

MEAN L

STD. DEV.

130.50 145.60 110.00 135.80 87.30 110.10

103.90 96.80 94.60 84 80 70.70 68.80

139.20 143.00 126.70 162 20 120.20 115.60

104.30 99.20 70.60 90 40 83.70 82.10

134.80 121.50 110.60 111 00 105.80 102.20

122 54 121.02 102.50 116 84 93.54 95.76

17.

168.

148.

155.10 130

169 50 130

118 60 145

127 10 117

96 40 105

11 23.45 21.14 32 31 19.48

90 134.70 132 40 168.20 138.70

70 156.10 138 20 127.30 117.20

140

27

61 131
48 16

40 129

10 107

50 105

40 114

10 79

33 115
88 20

40 114.10 120.00

90 104.70 215.60

40 93.90 91.30

80 122.70 104.50
20 103.20 172.40

33 119.16 137.10

.30 24.53 43.32

381
408

422

392

372
399

402

MEAN E

159

154

116
90

148

128

75

124.

70

60
70

50

30

10

50

77

208

151
145

106

166

135

82

142.50

70 158.10

90 129.90
00 151.20

90 136.50

80 258.60

60 136.20

60 97.30

152.54

161 50 197
130 10 86

259 50 97

112 60 98

284 80 138

134 60 128

116 20 95

171.33 120

.90

4O
00

2O
4O

8O

20

.27

19.71

130 20

149 30

126 50

96 60

84 60

116 00

129.20

118.91

21.98

152.50

108.30
130.60

100.90

144.70

104.70

135.00

125.24

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

32.51

130.02

27.19

40.76

132.73

29.11

50.61 71.O4 39.23

125.66 137.77 119.44

39.52 53.00 39.12

20.60

115.15

23.20
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LACTATE (mg/dl)

SUBJECT DAY
-4 +4 +27

pre post pre post pre post

376 4.20 6.50 9.90 9.00 5.20 6.00

407 5.40 5.60 8.40 8.30 5.30 4.90

409 14.00 11.10 14.30 12.60 9.20 9.80

397 8.90 5.90 9.50 8.00 7.40 6.10
391 10.00 7.70 11.70 6.60 13.30 9.90

MEAN C 8.50 7.16 10.76 8.90 8.08 7.34

STD. OEV. 3.90 2.38 2.31 2.24 3.35 2.34

'390 7.10

420 4.20

412 13.30

403 10.60

385 8.80

405 4.40

394 9.40

MEAN L 8._6
STD. DEV. L 3.30

381

408

422
392

372

399

402

MEAN E

24.30

67.50

68 80

20 50

20 90

11 70

7 10

31 54

8.00 16

4.90 34

13.50 32
8.10 21

5.90 8

6.50 21

11.70 12
8.37 21

25.69 3.14 9

70 6.90

90 5.70

30 11.60

50 10.50

70 5.10

60 8.40

10 _0.70

18 8O

29 70

38 70
14 90

20 30

33 6O

15.00
11 8.41 24.43

75 2.59 9.52

9.90 34.30 9.80 31.50 13.20 28.50

5.70 20.80 6.40 23.10 6.60 22.60
10.20 36.90 12.30 40.60 8.90 27.50

6.90 15.20 6.20 12.90 6.30 14.50

7.90 18.40 5.80 29.40 6.50 32.00

5.00 31.50 24.30 9.50 8.00 18.60

6.60 40.40 g.60 36.60 II.80 28.80

7.46 28.21 10.63 26.23 8.76 24.64

STD. DEV. E

TOTAL MEAN

TOTAL STD. DEV.

1.99 9.94 6.48 11.68

8.03 23.90 9.83 19.78

2.92 19.03 4.45 11.32

2.75

8.45

2.71

6.30

20.01

10.26
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GLUCOSE (mg/d I )

SUBJECT DAY

-4 +4 +27

pre post pre post pre post

376 83.70 96.40 90.90 87.90 64.40 75.50
407 77.40 64.20 67.80 70.10 62.60 69.90

409 84.40 89.60 101.90 83.60 101.40 99.80

397 101.30 89.20 72.50 88.60 83.10 74.30

391 74.30 76.60 121.80 62.60 87.30 79.10

MEAN C 84.22 83.20 90.98 78.56 79.76 79.72"

STD. DEV. C 10.45 12.80 22.07 11.62 16.33 11.70

"390 70.20 84.40 79,70 82.40 68

420 75.00 80,00 69.10 81.00 101

412 141.10 85.90 116.20 84.30 122

403 67.60 80.80 83.60 87.80 89

385 84.80 72.90 80.40 103.30 82

405 81.90 83.80 96.60 88.80 90

394 76.30 58.00 87.50 37.80 80

80

20
3O

60
80

40

10

MEAN L 85.27 77.97 87.59 80.77 90 74

STD. DEV. L 25.34 9.79 15.12 20.34 17 15

381 108.60 74.40 114.80 76.80 96.10
408 74.00 77.70 83.20 59.30 91.40

422 72.00 77.80 89,50 80.40 89.70

392 99.00 74.30 88.60 80.80 80.70

372 98.70 64.60 118.70 81.20 97.90
399 78.20 75.80 57.90 78.40 82.20

402 94.40 74.60 81.10 74.20 129.70

MEAN E 89.27 74.17 90.54 75.87 95.39

80.10

89.30
62.10

77 50
96 30

48 90

79 50

76 24

16 06.

78 00

79 O0
79 60

63 50

82 4O

77 90
84 40

7 .83 -

STD. DEV. E 14.36 4.47 20.80 7.72 16.44

TOTAL MEAN 86.47 77.95 89.57 78.38 89.56

TOTAL STD. DEV. 17.67 9.39 18.19 13.87 16.97

6.76

77.74

11.56
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SUBJECT

-4

PROTEIN (g/dl)

DAY
+4 +27

pre post pre post pre post

376 6.90 6.80 6.90
407 7.40 7.20 7.60

409 7.30 7.30 7.60

397 6.50 6.30 7.00

391 6.00 6.00 6.00

I0

60

60

20

20

7.00

7.60

7.60

7.30

6.30
MEAN C 6.82 6.72 7.02 7 14 7.16
STD. DEV. C 0.58 0.56 0,66

7 50

7 90

7 60

7 50

6 9O

7 3O

6 9O

7.10

6.90

6.70

7.30
6.70

6.50

6.30

7 O0

7 5O

7 5O
7 O0

6 20

7 04

0 53

7 60

7 50

6 30

7 70

7 00

7 O0
6.80

57

"'390

420

412

403
385

405

394

7 30

6 90

6 8O

7 30

6 6O

6 4O

6.70

7 O0

7 20

6 80

7 40

6 40

6 6O

6 10

6 79

0.54

7.80

7.50

7.50

7.50

7.00

7.00

7.00

MEAN L 7.37 6.79 7.13 6.86 7.33
STD. DEV. L 0.46 0.37 0.34 0.50 0.34 0.33

381 7.70 8.10

408 7.40 7.80

422 7.80 8.10

392 7.30 7.60

372 6.80 7.40
399 7.00 8.00

402 7.10 8.00

7 tO

7 20

7 30

7 60

6 O0

6 80

7 O0

MEAN E 7.30 7.86 7.00
STD. DEV. E 0.37 0.27 0.51

TOTAL MEAN 6.98 7.38 6.93
TOTAL STD. DEV. 0.50 0.59 0.48

8.00 7 60

7.80 7 10

8.10 7 40

7.90 7 3O

7.00 6 30

7.30 6 80
8.00 7 30

7.73 7 11

0.42 044

7.33 7.03
0.55 0.44

7 90
7 70

8 20

8 O0

7 O0

7 40

6 80
7 57

0 53

7.37

• 0.47
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SUBJECT

CORTISOL (ug/dl)

-4

DA Y

+4

pre post pre post pre

+27

post

376

407

409

397
391

MEAN C

STD. DEV. C

" 390

420
412

403

385

405

394

MEAN L
STD. DEV. L

25.50

5.80

10.90
22.50

18.80

22 60

16.70

8.18

18.90
9.30

8.30

19.20

12.50

13.64

5.18

9.10
14.10

16.90

11 50

15 70

9 50

15 70

13 21

3 17

8 90

16 70
12 00

17 90

15 62
5 32

17 30
14

17

18

12

19 20

20
6O

70

90

16 52

10 30

9 60
15 70

13 20

9 70
11 O0

12 50

11 71
2 23

10 10

5 80

9 40

13 80

11 28

4 40 81

8.20

9 90

11 60
10 00

9 60

7 50

16 2O

10 43

2 87

381 11.60 14.80
408 12.80 8.50

422 16.30 17.10 15

392 24.20 15.90 16
372 23.90 18.50 23

399 10.40 13.50 13

402 5.50 9.50 6

12 20

19 50
8O

50

40

70

70

10 00

11 50

11 30
8 60

7 60

13 2O

10 50

10 39

1 88

10 20

2 80
5 60

2 90

1 70

1 3O

6 9O

3 O6

2 40

13.50

6.90

10.90

18.30

12.90

12.50

MEAN E 14.96 13.97 15 40 14.79 14.93

4.14

9.20
11 70

13 70
11 40

10 00

12 60

10 8O

.34

.53

15.90 15.90 13.20

8.70 13.70 13.40

16.30 17.40 17.00
5.50 11.90 8.90

28.70 24.70 23.00

19.40 13.10 18.40

9.00 7.80 6.60

14.36

STD. DEV. E 6.99 3.76 5.34 7.91 5.28 5.63

TOTAL MEAN 14.77 12.58 14.10 12.24 14.66 12.76

TOTAL STD. DEV. 6.04 4.03 4.58 5.52 3.87 4.12
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SUBJECT

ALDOSTERONE (ng/dl)

DAY
-4 +4 +27

pre post pre post pre post

376 15.40 9.60 11.90 9.80 13.20 11.30

407 11.00 8.40 10.10 10.40 8.60 7.40

409 12.60 11.80 16.40 14.20 12.50 9.80
397 33.20 15.00 13.00 20.20 8.70 14.20

391 7.90 7.00 10,20 13.70 8.20 8.40

MEAN C 16.02 10.36 12.32 13.66 10.22 10.22

STD. DEV. C 9.98 3.13 2.58 4.14 2.42 2,67

7.40 6 30 7.30 9 70

19.00 15 80 18.20 16 30

"'390 8.70

420 12 60

412 8 40 8.80

403 7 90 6.00

385 8 60 5.60

405 9 00 7.30
394 12 30 8,80

M_AN L 9
STD. DEV. L 1

64 8.99 8

95 4.58 3

30 13.50

30 13.20

30 14.70
30 9.50

30 11.90

51 12.61

8 60

6 80

5 6O
5 00

8 90

8 70

41 3.54 3.78

9.50

21.00

16.80

19 50

17 40
11 50

8 80

14 93

4 94

381 6.50 11.40 11.00 19.40 19.30 28.20

408 15.30 28.10 7.70 23.80 12.90 35.40

422 18.20 32.40 7.40 8.10 24.40

392 14.90 10.90 11.30 7 10 17.20

372 6.90 21.10 7.80 il 40 27.40
399 16.10 24.90 5.70 7 20 20.90

402 16.40 28.60 10.50 9 20 26.80
MEAN E 13.47 22.49 8.77 10 74 25.76

STD. DEV. E 4.74 8.49 2.15

20.50
18 2O

31 90

17 10

31 30
23 17

6 13 35 5.79

TOTAL MEAN 12.73 14.32 9.61 16.78 9.85 17.68

TOTAL STD. DEV. 6.15 8.63 3.11 6.77 3.64 8.04
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ACTH (pg/ml)

SUBJECT

-4

DAY

+4 +27

pr e post pr e pes t I:)r e po$t

376

407

409

397

391

MILAN C
STD. DEV.

"390

420

412

403

385

4O5

394

C

45.00 22

54.00 31

71.00 59

116.00 51

26.20 6

O0 31.00 12.00 21.00 6

O0 60.00 27.00 42.00 44

O0 64.00 77.00 55.00 55

O0 40.00 38.00 52.00 57

40 14.40 12.00 19.10 8

O0

O0

O0

O0

9O

62.24 33 88 41.88 33.20 37.82 34 18

34.29 21

18 O0

23 O0

46 O0

40 O0

36 40

19 50

63 30
35 17

16 44

38 20.58 26.83 16.93 24

O0 10.00

O0 14.00

O0 36.00

O0 27.00

20 37.50

90 17.50

70 46.10

92

14

90

51

42

35
14

76

22.00 21.00
7.00 18.00

44.00 39.00

18.00 20.00

25.50 41.80

33.30 55.60
58.60 58.10

WEAN L 46 26 26.87 29.77 36.21
STD. DEV. L 94 13.57

21 O0
33 O0

43 O0

22 O0

34 80

38 40
50 30

34 64
10 63 17.23 16.93

52.00

10 O0
31 O0

32 O0

81 8O

8 2O
8 3O

31 90

27 37

O0 194.00 37.00
O0 7.00 8.00

O0 37.00 52.00

O0 29.00 26.00

30 67.10 65.40

90 37.60 46.70
40 34.00 25.20

57.96

62.52

09

28

37.00
12 O0

20 O0

26 O0

72 50

22 70
1 50

27 39

22 78

37.19

18 19.26

09 32.67 42.85 31.01 36.04
56 21.02 40.51 18.82 18.94

381 55.00 74

408 13.00 15

422 39.00 64

392 82.00 26

372 44.10 44

399 8.90 33
402 3.00 30

MEAN E 35.00 41

STD. DEV. E 28.57 21

TOTAL MEAN 42.23 41.
TOTAL STD. DEV. 27.83 23.
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SUBJECT

PLASMA RENIN ACTIVITY (ngA1/ml/hr)

DAY
-4 +4

pre post pre post

+27

pre post

376 0.89 0.77 1.66 1.62 2.27 2.05

407 0.84 0.50 2.64 2.30 2.16 1.85

409 1.22 0.96 2.10 3.10 1.13 1.17

397 1.88 1.08 3.14 3.09 5.83 4.08

391 0.61 0.50 1.42 1.28 1.00 1.16

MEAN C 1.09 0.76 2.19 2.28 2.48 2.06

STD. DEV. C 0.49 0.26 0.70 0.83 1.96 1.20-

" 390 0
420 0

412 0

403 0

385 0

405 0

394 0

51 0.61

63 0.62

14 0.28

92 1.05

62 0.76

1 06
0 99

0 35

1 81

1 29

1.03 1.27

0.97 1.35

0.90 0.38

3.52 3.24

2.02 1.12

78 0.77 0 87 1.92 1.17

41 0.41 1.00 1.03 1.20

MEAN L 0 57 0.64 1.05 1.63 1.39
STD. DEV. L 0

381 0

408 1

422 1

392 1

372 0

399 1
402 1

MEAN E
STD. DEV. E

I .44

I .60

1.12

3.68

1 .92

3.08

I .53
2.05

25 0.25 0.44 0.96 0.88 0.95

1 27

2 51
0 90

1 O6

0 67

1 70

I .22

0.47 I

4.18 2

2.58 I

1 .59 0

3.02 0

2.06 1

2.54 1

8e

28
76

75

90
23

37

50 0.51

59 3.34

36 2.59

21 0.92

59 1.34
76 2.48

00 7.09

1 14 2.61 1.33 2.35 1 45
550.48 2.22 0.61 1.16 0

2.60

5 33
4 09

215

2 77

2 02

2 98

3 13

1 18

TOTAL MEAN 0.92 1.40 1.46 2.06 1.70 2.45

TOTAL STD. DEV. 0.48 1.61 0.72 1.01 1.20 1.17
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AVP (pg/ml)

SUBJECT DAY

-4 +4 +27

pre post pre post Dre post

376 1.70 1.40 0.70 0.40 0.30 0.40

407 0.60 0.80 0.60 0.40 0.70 0.50

409 5.60 2.20 4.50 4.50 0.70 3.70
397 11.40 3.40 1.10 1.20 6.80 3.10

391 1.30 0.60 0.60 0.60 0.50 0.60

MEAN C 4.12 1.68 1.50 1.42 1.80 1.66

STD. DEV. C 4.51 1.15 1.69 1.75 2.80 1.60

"390 0.30 0.30 0.30

420 0.60 5 70 0.50

412 1.40 3 30 0.70

403 3.30 2 40 4.60

385 0.60 0 60 0.80

405 0.80 0 80 0.40

394 1.00 0 90 0,90

2 00

2 10

1 50

6 10
0 70

0 90

0 90

2 03

0 4O
1 00

0 6O

2 5O

0 8O

0 6O

0.30
2.10

3.20

2.30

0.90

1 .20

0.90

MEAN L 1, 14 1. 17 0.98 1.66
STD. DEV. L 1.01 1 96 1.53 2 06 0.77

381 1.40

408 0.40

422 1.30
392 3.40

372 0.60

399 1.30

402 0.80

2.30

1 10

1 60

1 C0

1 10
0 60

4 20

1 70

1 .01

MEAN E 1.31

I .50 5.30 2.20 4. 10

1 .90 3.20 1 . 10 1 .00

1.00 2.70 1 .40
0.20 1.10 0.40 0.60

1.10 0.70 0.70 1.20

0.60 0.60 0.50

0.80 4.90 0.80 1.40

1.02 2.40 1.20 1.62
STD. DEV. E 1.00 1.

TOTAL MEAN 1.99 1.

TOTAL STD. DEV. 2.63 1.

23 O,62 2.04 0.89 1.25

81 1.21 2.01 1.29 1.61
45 1.28 1.90 1.55 1.20
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SUBJECT

NOREPINEPHRINE (pg/ml)

DAY
-4 +4 +27

pre post pre post pre post

376 130.00 123.00 155.00 234.00 61.00 122.00
407 114.00 96.00 96.00 89.00 145.00 132.00

409 181.O0 152.00 279.00 263.00 113.O0 181.00

397 85.00 82.00 176.00 160.00 245.00 208.00

391 242.00 174.00 252.00 223.00 142.00 176.00

MEAN C 150.40 125.40 191.60 193.80 141.20 163.80
STD. DEV. C 61.94 38.15 74.18 69.61 67.11 35.91

" 390 175.00

420 252.00

412 147.00

403 180.00
385 81.00

405 35.00

394 127.00

248

563

561 00

352 O0
111 00

147 00

176.00

00 78

00 101
124

118

120

100

97

.00 53.00 202.00

00 398.00 165.00 574.00

00 341.00 71.00 410.00

O0 319.O0 139.00 184.00

O0 190.00 105.00 182.00

00 375.00 94.00 225.00

O0 303.00 87.00 249.00

MEAN L 142.43 308.29 105 43 321.00 102.00 289.43
STD. DEV. L 70.77 190.05 16.27 73.12 38.73 148.10

381 I08.00 227.00

408 211.00 275.00

422 159.00 356.00

392 75.00 147.00

372 183.00 319.00

399 178.00 389.00

402 103.00 278.00

MEAN E 145.29 284.43

150.00

198 00

116 00

107 00

98 O0

172 00

94 00

133.57

261.00 79.00. 186.00

267.00 136.00 251.00

290.00 13.00 398.00

174.00 71.00 152.00

310.00 83.00 272.00

373.00 295.00 382.00

261.O0 69.00 213.00

276.57 106.57 264.86

STD. DEV. E 50.20 81.21

TOTAL MEAN 145.58 251.37

TOTAL STD. DEV. 58.07 143.72

40.30 60.13 90.48 94.28

138.47 268.39 114.00 247.32

55.41 81.42 67.18 1.15.36
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SUBJECT

EPINEPHRINE (pqlml)

DAY

-4 +4 +27

pre post pre post pre post

376 25.00 10.00 23.00 26.00

407 29.00 17.00 13.00 15.00
409 37.00 13.00 27.00 27.00

397 29.00 9.00 64.00 55.00

391 16.00 406.00 3.00 9.00

MEAN C 27.20 91.00 26.00 26.40
STD, DEV. C 7.63

"390

420

412
403

385

405

394

23

29

100

33.00

18 O0
21 O0

29 O0

7 O0

21 60

10 14 176.12

28 O0

10 O0

39 O0

29 O0

O0

O0

O0

36 86

17

19.00
20 O0

14 O0

9 O0

19 O0

16 20

4 66

60.00 22.00

32.00 13.00 19.00

103.00 13.00 38.00
71.00 44.00 73.00

42.00 24.00 28.00

45.00 10.00 30.00

16.00 19.00

23.19 17.69

00 36.00

00 38.00

O0 79.00
00 70.00

00 32.00

00 44.00

O0 51.00

MEAN L 52.71 21.00 34.50 50.00

STD. DEV. L 29 28.48 12.55 20.19

381 57.00 63.00

408 30.00 22.00

422 27.00 36.00 14.00

392 24.00 22.00 13.00
372 25.00 96.00 20.00

399 10.00 39.00 6.00

402 38.00 61.00 31.00

MEAN E 30.17 49.57 17.67

29

12

27

27
15

20

12

20 29
7 43 17.99

57.00
30 00

21 00

21 00

74 00
20 00

45 00

58.00 53.00
33.00 43.00

105.00 29.00

16.00 23.00

20.0O 54.00

20.00 18.00

17.00 61.00

38.29 38.43 40.14
STD. DEV. E 15.89 25.51 8.64

TOTAL MEAN 31.94 43.37 40.41

TOTAL STD. DEV. 20.15 26.28 94.67

21.10 32.88 16.88

30.89 28.47 40.16

19,31 23.76 19.04

192



SUBJECT

HEART RATE (b/min)

DAY
-4 +4

pre post pre post Dre

+27

post

376 52.00 52.00 64.00 60.00 56.00

407 60.00 60.00 72.00 68 00 72.00

409 76.00 72.00 68.00 64 00 64.00

397 68.00 68.00 68.00 64 00 92,00

391 72.00 74.00 64,00 68 00 64.00

MEAN C 65.60 65.20 67.20 64 80 69.60

STD. DEV. C 9.63 9.12 3.35 3 35 13.74 16.40

"390 52.00 88.00 56.00 60.00 60

420 56.00 90.00 68.00 86.00 68

412 76.00 120.00 60.00 84.00 64
403 46.00 108.00 52.00 108,00 48

385 60.00 72.00 56.00 60.00 60

405 66.00 84.00 60.00 72.00 64

394 60.00 60.00 60.00 108.00 65

52.00

72.00

64.00
96.00

64.00

69.60

00 70.00

00 84.00

00 114.00

00 126.00

00 120.00

00 120.00

00 96.00

MEAN L 59.43 88.86 58.86 82.57 61 43 104.29
STD. DEV. L 9.71 20.33 5.01 20.16 6 60 21.27

381 66.00 142.00 60.00

408 64.00 108.00 76.00
422 72.00 163.00 64 00

392 76.00 144.00 76 00

372 60.00 144.00 60 00

399 68.00 132.00 80 O0
402 64.00 156.00 60 00

132.00 60.00

120.00 72.00
132.00 64.00

138.00 72.00

162.00 56.00

150.00 68.00
126.00 64.00

MEAN E 67.14 141.29 68 00 137.14 65.14

STD. OEV. E 5.40 17.78 8 94 14.46 5.98

TOTAL MEAN 63.89 101.95 64.42 98.00 64.95
TOTAL STD. DEV. 8.63 36.13 7.53 34.67 8.90

136 00

136 00

120 00

126 00

132 00

126 00
150 00

I_Z.Z_

9.76

105.47

29.66
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SYSTOLIC(mmHg)

SUBJECT DAY

-4 +4 +27

pre post pre post pre post

376 120.00 120.00 118.00 112.00 106.00 106.00

407 126.00 106.00 110 00 112.00 108.00

409 132.00 120.00 106.00 130 00 118.00 140.00

397 112.00 110.00 110 00 106.00 96.00

391 120.00 118.00 112.00 t08 00 112.00 126.00

MEAN C 122.00 119.33 110.40 114 O0 110.80 115.20

STD. DEV. C 7.48 1.15 4.98 9 06 5.02 17.58

" 390 102.00 180.00 106.00 116.00 108.00

420 108.00 178.00 110.00 108.00 128.00
412 134.00 136.00 118.00 148.00 130.00 144.00

403 128.00 168.00 112.00 150.00 126.00 144.00

385 98.00 124.00 118.00 132.00 10

405 98.00 116.00 116.00 138.00 106.00 154.00

394 128.00 128.00 120.00 154.00 128.00 152.00

MEAN L 113.71 147.14 114.29 139.67 115.14 141.67
STD. DEV. L 5.72 27.27 5.09 14.17 12.38 11.34

381

408

422

392

372

399

402

190.00 22.00 16824.00

06 00

22 O0

18 00

12 00

24 00

22 O0

18 29

6 87

00 110.00

120 00

108 00

122 00

110 00

130 00

120 00

180.00

180.00

158.00

198.00

190.00

212.00

10.00
26.00

22.00

18.00
32.00

12.00

176 00
204 00

186 00

186 00
190 00

188 00

185 43

11 30

MEAN E 186.86 20.29 117 14

STD. DEV. E 16.85 7.70 07

TOTAL MEAN t17.58 158.59 115.47 150.33 114.74

TOTAL STD. DEV. 11.05 32.88 7.11 32.54 9.22

182 00

194 O0

76 00

168 00

172 O0

192 00

208 00
170.29

43.76

145.44

36.26

194



DIASTOLIC (mrnHg)

SUBJECT DAY
-4 +4 +27

pre post pre post pre post

376 70.00 78.00 68.00 70.00 74.00 74,00

407 84.00 76.00 76 O0 78.00 78.00
409 80.00 80.00 60.00 80 00 78.00 90.00

397 68.O0 60.00 66 00 60.00 60.00

391 78.00 86.00 68.00 64 O0 68.00 74.00

MEAN C 76.00 81.33 66.40 71 20 71.60 75.20

STD. DEV. C 6.78 4.16 6.69 6 72 7.67 10.73

- 390

420

412

403

385

405

394

70.00 80.00 64.00 80.00
68.00 84.00 68 00

80.00 68.00 72 00 72.00

78.00 70,00 76 00 76.00

68.00 80.00 78 00 88.00
68.00 86.00 80 00 90.00

90.00 86.00 92 O0 78,00

STD. DEV. L

68

70

78

8O

70

76

88.00

O0

O0

O0

O0

O0

O0

MEAN L 74.57 79.14 75 71 80.67 75.71
8.46 7.38 9 12 7.00 7.06

00 84.00 76.00
00 80.00 76,00

00 96.00 78.00

O0 98.00 80.00

00 90.00 74.00

00 90.00 94.00
00 68.00 70.00

381 84.00 80.00 88
408 78 O0 78.00 76

422 86 00 82.00 86

392 72 O0 78.00 70

372 78 O0 90.00 78

399 90 00 108.00 90
402 70 00 80.00 76

MEAN E 79 71 85.14 80 57 86.57 78.29

STD. DEV. E 7 34 10.88 7 46 10.31 7.61

TOTAL MEAN 76.84 82.00 75.05 80.33 75.58

TOTAL STD. DEV. 7.58 8.66 9.44 10.16 7.50

60.00

70.00

62 O0

80 00

98 00

92 00

77 00
15 74

88 O0

88 O0

100 O0

96 O0
88 O0

88 O0

70 O0

88 2_

9 41

80.89

12.98
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SUBJECT

-4

HEMATOCRIT

DAY

+4 +27

pre post pre post pre post

376 45

407 41
409 46

397 38

391 41

20 45.40 48.30 48.80 48.50 48.40

90 42.00 44.90 45.00 45.10 45.10

O0 45.50 49.20 48.10 47.40 47.20

20 37.20 41.20 41.00 43.70 43.70

20 42.70 44.20 44.80 43.20 43.10
MEAN C 42 50 42.56 45.56 45.54 45.58 45.50

STD. DEV. C 3 17 3.38 3.24 3.11 2.31 2.26

"990 38

420 40

412 44

403 39

385 4O

405 42

394 44

70 40.20 41

50 44.30 40
70 44.60 45

70 41.70 42

60 42.00 43

20 43.20 42

70 46.00 46

30 43.50 41.10 43.40

70 42.80 41.50 43.70

70 47.30 45.90 48.60

50 43.80 41.80 41.80

30 44.10 41.00 42.60

60 44.20 40.40 42.00

10 47.40 46.50 47.90

MEAN L 41 59 43.14 43 17 44.73 42.60 44.29

STD. DEV. L 2

381 41

408 42
422 45

392 43

372 47

399 44

402 41

37 1.99 2

30 44.30 44
50 44.90 42

20 48 30 44

44 40

48 80

46 20

44 90

45 97

1 87

O6 1.85

10 46.30

80 43.90

10 47.30

70

O0

O0

80

44,80 46.30 43

47 70 51.00 45

42 50 43.70 43

40.80 43.40 41

2.50 2.80

44.30 45.60

42.80 45.10

43.60 46.30

50 45.40

40 48.30

O0 44.50

80 44.60

MEAN E 43.64 43.83 45.99 43 49 45.69

STD. DEV. E 2.00 2.16 2.69 1 15 1.31

TOTAL MEAN 42.58 44.03 44.04 45.41 43.71 45.12

TOTAL STD. DEV. 2.50 2.72 2.50 2.45 2.28 2.18
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HEMOGLOBIN

SUBJECT DAY
-4 +4 +27

pre post pre post pre post

376 16.00

407 14.30

409 15.50

397 12.70

391 15.00

16 70
15 50

17 10

13 90

16 30
MEAN C 14.70 14.48 15 90 15.72 16.10

STD. DEV. C 1.28 1.53 1 26 1.42 0.64

"390 13.20

420 13.70

412 14.10

403 13.30

385 14.00

405 15.00

394 15.90

16.00

14.20
15,00

12.00

15,20

16.70 t7.00
15.10 15.70

16.50 16,50
13.50 15.40

15.80 15.90

13.60

15 10

15 10
13 50

14 60

15 50

16 60

14 86

13.50 14

14.30 14

15.10 15

14.20 14

15.50 15

15.20 15

16.60 17

40 13

90 14

90 15

70 14

90 14

90 14

00 16

6O

2O

5O
6O

6O

9O

5O

MEAN L 14.17 14.91 15 53 14 84

STD. DEV. L 0.97 1.08 1.02 0 91 0 94

381 14.60 16.60

408 14.30 14.80

422 15.S0 16.70
392 14.90 15.40

372 17.O0 17.80

399 15.40 16.40

402 14.30 14.40

17 00

15 80

16 80
15 30

15 70

16 12

0 74

15.10

14 70

16 10

15 6O
17 20

14 70

14 60

14.50

15.20

16.60
14 70

15 00

15 60

16 70

15 47

0 88

5.70 15.00 15.60

5.30 14.10 15.40

8.10 16.10 17.40

7.00 16.00 16.90

8.50 16.50 17.70
5.70 14.90 15.30

6.30 14.50 14.90

MEAN E 15.14 16.01 15.43 6.66 15.30 16.17 "

STD. DEV. E 0.95 1.20 0.96 1.25 0.90 1.13"

TOTAL MEAN 14.67 15.18 15.36 15.99 15.34 15.90

TOTAL STD. DEV. 1.O8 1.35 1.08 1.23 0.96 0.96
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DAY- -4

VOLUME (ml)

TIME- Dre 3' 120' pre
SUBJECT

376 74.0 74.0
407 815.0 815.0

409 89.0 89.0

397 43.0 43.0

391 443.0 443.0

+5 +28

3' 120' pre 3' 120'

74.0 40.0 390.0

815.0 340.0 270.0
89.0 90.0 242.0

43.0 23.0 226.0

443.0 42.0 125.0

40.0

340 0

90 0

23 0

42 0
107 0

132 6
MEAN 292.8 292.8 292.8 107.0 250.6

STDEV 334.3 334.3 334.3 132.6 95.2

390 275.0 290.0

420 495.0 210.0

412 62.0 57.0
403 25.0 130.0

385 180.0 68.0

405 118.0 50.0

394 92.0 65.0
MEAN 178. 1 124.3

STDEV 162.2 92.7

390.0

270 0

242 0
226 0

125 0

250 6

95 2

40.0

340 0

90 0

23 0
42 0

107 0

132 6

390 0

270 0

242 0

226 0
125 0

250 6

95 2

381 312.0

408 82.0

422 51.0
392 194.0

372 76.0

399 242.0
402 168.0

80.0

24 0

07 0

32 0

74 0
72 0

80 0

52 7

30 7

275.0 290.0

495.0 210.0

62.0 57.0
25.0 130.0

180.0 68.0

118.0 50.0
92.O 65.0

178.1 124.3

162.2 92.7

180 0

124 0

107 0

132 0
1740

172 0

180 0

152 7
30 7

275.0 290.0 180.0

495.0 210.0 124.0

62.0 57.0 107.0

25.0 130.0 132.0
180.0 68.0 174.0

118.0 50.0 172.0

92.0 65.0 180.0

178.1 124.3 152.7
162.2 92.7 30.7

82

39

57
74

315

100

157.0

82 0

39 0

57 0

74 0
315 0

100 0

117 7

94 7

356.0 312.0 157.0 356.0 312.0

98.3

82 0

51 0

194 0

76 0
242 0

168 0

160 7

96 7

157 0

0

0

0

0
0

0

94

106.0 82.0 82.0 106.0

70.0 51.0 39.0 70.0

188.0 194.0 57 0 188.0
105.0 76.0 74 0 105.0

90.0 242.0 315 0 90.0
140.0 168.0 100 0 140.0

117 7

94 7

MEAN 160.7 150.7 160.7 150.7 117 7

STDEV 96.7 98.3 96.7

356.0

106 0

70 0

188 0

105 0
9O 0

140 0

150 7

98.3

T MEAN 201.9 117.3 177.7 201.9 117.3 177.7 201.9 117.3 177.7

T STDEV 199.7 99.1 86.9 1.99.7 99.1 86.9 199.7 99.1 86.9
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TIME (min)

DAY- -4 +5 +28

TIME- pre 3' 120' pre 3' 120' pre 3' 120'
SUBJECT

376 90.0 40.0 155.0 90.0 40.0 155.0 90.0 40.0 155.0
407 228.0 35.0 115.0 228.0 35.0 115.0 228.0 35.0 115.0

409 115.0 40.0 122.0 115.0 40.0 122.0 115.0 40.0 122.0
397 75.0 35.0 122.0 75.0 35.0 122.0 75.0 35.0 122.0

391 245.0 170.0 318.0 245.0 170.0 318.0 245.0 170.0 318.0

MEAN 150.6 64.0 166.4 150.6 64.0 166.4 150.6 64.0 166,4
STDEV 79.9 59.3 86.2 79.9 59.3 86.2 79.9 59.3 86.2

0 104.0 116.0 64.0 104.0 116.0

0 121.0 239.0 125.0 121.0 239.0

390 116.0 64

420 239.0 125

412 60.0 67

403 111 0 52
3_5 118 0 60

405 135 0 60

394 130 0 70

129 9

54 0

MEAN 71 1 121.9 129.9 121.9 121.9
STDEV 24

0 120.0 60.0 67.0 120.0

0 120.0 111.0 52 0 120.0

0 120.0 118.0 60 0 120.0
0 140.0 135.0 60 0 140.0

0 128.0 130.0 70 0 128.0

71 1

24 44 10.8 54.0

381 155.0 55.0 141.0 155.0 55.

408 90.0 55.0 70.0 90.0 55

422 1t2.0 50.0 120.0 112.0 50

392 95.0 50.0 120.0 95.0 50

372 115.0 47.0 113.0 115.0 47

399 301.0 91.0 125.0 301.0 91
402 205.0 80.0 120.0 205.0 80

60 0

111 0

118 0
135 0

130 0

129 9

10.8 54.0

64.0 104.0

125 0 121.0

67 0 120.0

52 0 120.0
60 0 120.0

60 0 140.0

70 0 128.0

71 1

24 4 10.8

0 141.0 155.0 55.0 141.0

0 70.0 90.0 55.0 70.0

0 120.0 112.0 50.0 120.0

0 120.0 95.0 50.0 120.0

0 113.0 115.0 47.0 113.0
0 125.0 301.0 91.0 125.0

0 120.0 205.0 80.0 120.0

MEAN 153.3 61.1 115.6 153.3 61.1 115.6 153.3 61.1 11_

STDEV 76.6 17.2 21.9 76.5 17.2 21.9 76.5 17.2 21.9

T MEAN 143.9 65.6 131.3 143.9 65.6 131.3 143.9 65.6 131.3

T STDEV 66.8 33.2 48.2 66.8 33.2 48.2 66.8 33.2 48.2
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DAY -

TIME-

SUBJECT

376
407

409
397

391

MEAN
STDEV

prB

0 8

3 6

0 8

0 6
4 8

1 5
1 2

390 2.4
420 2. 1

412 1 .0

403 0.2

385 I. 5

405 0.9

394 0.7

MEAN 1.3

STDEV 0.8

381

4O8

422

392

372

399

402

MEAN
STDEV

2 0

0 g

0 5

2 0

0 7

0 8

0 8
1 1

0 6

URINE FLOW RATE (ml/min)

-4 +5 +28

3' 120' pre 3' 120' pre 3' 120'

1.0

9 7

2 2
0 7

0 2

2 8
4 0

2 5
2 3

2 0

1 9

0 4
1 8

0 8

0 8

3 6

0 8
0 6

1 8

1 5
1 2

1.0

9 7

2 2
O 7

0 2
2 8

4 0

2 5

2 3

2 0
1 9

0 4

1 8

0 8

0 8

3 6
0 8

'0 6

1 8
1 5

1 2

1 0

9 7

2 2
0 7

0 2

2 8

4 0

4 5
1 7

0 9

2 5

1 1

0 8

0 9

1 8

1 4

1 7

1 0

0 9

1 1

1 4

1 2

I 4

1 3

0 3

2 4

2 1

1 0

0 2

1 5

0 9

0 7
1 3

0 8

4 5

1 7

0 9

2 5
1 !

0 8
0 9

1 8

1 4

1 7

1 0

0 9

1 1

1 4

1 2

1 4
1 3

0 3

2 4

2 1
1 0

0 2

1 5

0 9

0 7

1 3

0 8

4 5

1 7

0 9

2 5

1 1

0 8

0 9
1 8

1 4

2 9
1 5

0 8

1 1

1 6

3 5

1 3

1 8

1 0

2.5 2.0

1 o5 0.9

0.6 0.5

1 .6 2.0

0.9 0.7

0.7 0.8

I .2 0.8

2 5

1 B
0 6

1 6

0 9

0 7
1 2

1 3

2 9
1 5

0 8

1 1

1 6

3 5

1 3
1 8

I 0

2 0
0 9

0 5

2 0

0 7

0 8

0.8

2 5
2 3

2 0

I 9

0 4

1 8
0 8

1 7

1 0

O 9
1 1

1 4

1 2

1 4

1 3

0 3

1.3 1.1 1.1
0.7 0.6 0.7 0.6 1.0 0.7

2.9 2.5
1 .5 1 .5

0.8 0.6

1.1 1.6

1 .6 0.9

3.5 0.7

1 .3 1 .2
1 .8 1 .3 "

TMEAN 1.3 2.0 1,4 1.3 2.0 1.4 1.3 2.0 1.4

T STDEV 0.8 2.1 0.6 0.8 2.1 0.6 0.8 2.1 0.6
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PLASMA CREATININE (mg/dl)

DAY- -4 +5 +28

TIME- pre 3 ' 120 ' Dre 3 ' 120 ' IDr8 3 '

SUBJECT
376 0,9 0.8 0,9 0,8 0,9 0,8
407 0,8 0,8 0,8 0,8 0,8 0.8

409 0,9 0,8 0,9 0.8 0,9 0,8
397 0,5 0.4 0,5 0,4 '0.5 0.4

391 .1 ,0 0,8 1 ,0 0,8 1 ,0 0,8

120'

MEAN 0.8 0.7 0.8 O. 7 0.8 0.7

STDEV 0,2 O, 2 0 , 2 0 , 2 O, 2 0 , 2

390 1.0 1

420 0.9 1

412 1.0 1

403 0.9 0
385 0.8 0

405 1.0 1

394 1.0 1

0 1,0
0 0,9

0 1,0

9 0,9

9 0,8
0 1,0

0 1,0

1 0

! 0
1 0

0 9

0 9

1 0

1.0

1.0 1
0.9 1

1.0 1

0.9 0

0.8 0
1.0 1

1.0 I

MEAN 0,9 1 0 0,9 1 ,0 0,9 1 0
STDEV 0,1 0 1 0.1 0.1 0.1 0

1 0

1 0

0 8

0 6

0 9
0 8

0.9

381

4O8

422

392

372

399
402

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0
0,9 0,8 0,9 0,8 0,9

07 0,6 0,7 0,6 0,7

1 0 0.9 1,0 0,9 1,0

0 8 0,8 0,8 0,8 0,8
09 0.9 0,9 0,9 0,9

MEAN 0,9 0 9 0,9 0,9 0,9 0,9

STDEV 0, 1 0 1 0,1 0,1 0,1 0,1

T MEAN 0.9 0.9 0.9 0.9 0.9 0.9

T STDEV 0.1 0.1 0.1 0.1 0.1 0.1
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DAY- -4

T I MEANE- Dre 3 '

SUBJECT

376 1 .5 1 .3 0,3

407 O. 4 0 . 2 0 . 6

409 1 .7 1 .3 0.9
397 1 . 1 1 .5 0.8

391 0.9 0.9 0.3

URINE CREATININE (mQ/ml)

+5 +28

120' Dre 3' 120' pre 3' 1,

0.3 1 .5

0.6 0.4

0.9 1 .7

0.8 1.1
0.3 0.9

MEAN 1 . 1 1 . 1 0.6 0.6 1 . 1
STDEV 0.5 0.5 0.3

390 0.6

420 0.3

412 2.3

403 1.3
385 0.9

405 1.5

394 1.8

MEAN I 2
STDEV 0.7

1 5
0 4

1 7

1 1

0 9
1 1

0 5

1.3
0 2

1 3

1 5
0 9

1 1

0 5

381

408

422

392

3=2
399

402

0.3 0.5

0 3

0 8
! 5

1 2

1 1
1 2

1 1

I 0
0 4

0.8

1.5
1.4

1.4

1.0
1.3

0.9

1.2
0.3

0.6

0.3

2 3

I 3

0 9
! 5

1 8
! 2

0 7

0.3

0.8

1 5

I 2
1 1

1 2
1 1

1 0

0 4

0 8

1 5
1 4

1 4

1 0

1 3
0 9

1 2

0.3

0 6

0 3

2 3

1 3
0 9

1 5
I 8

1 2

0 7

0 7

0 7
2 3

0 6

1 8
0 8

1 5

0.5

0,5

f.6
1.3

0.8
0.9

1.0

0,5

0.5

f.6

1.3
0.8

0.9

1,0

1 3

0 2

1 3

1 5
0 9

1 1
0 5

0.7

0 8

2 3

0 9
1 1

1 7

1 0
1 2

0 6

0 7

0 7

2 3

0 6
1 8

0 8

1 5
1 2

0 7

0 3

0 8

1 5

1 2
1 1

1 2
1 1

I 0

0 4

0.3

0.6

0.9

0.8
0.3

0.6

0.7

0 8

2 3
0 9

1 1

1 7

1 0
1 2

0 6

0 7

0 7

Z 3
0 6

1 8

0 8

1 5
1 2

0.3

0.8

1.5

1.4

1.4
1.0

1.3
0.9

1.2

0.3

0.5 0.7

0.5 0.8

!.6 Z.3
1 .3 0.9

0.8 1.1

0.9 1 .7

1 .0 1 .0

MEAN 1 2 0.9 0.9 0.9 I .2
0.4 0.7 0.4 0.6STDEV 0.7 0.4

TMEAN 1.2 1.0 1.0 1.2 1.0 1.0 1.2 1.0 1.0

T STOEV 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5

2O4



DAY-

TIME-

SUBJECT
376

407

409
397

391

M_AN

STDEV

390

42O

412
403

385

405

394

pre

STDEV

1.2
1 3

1 3

0 6

1 7

1 2
0 4

1 4

0 7

2 4
0 3

1 3

1 3

1 3
1 2

CREATININE EXCRETION RATE (mg/ml)

-4 +5 +28

3' 120' ore 3' 120' ore 3' 120'

1 2

1 3

1 3
0 6

1 7

1 2

1 .3 0.8
2.1 1.4

3.0 1 .8

1 .0 1 .4

0.2 0.1

0.8
1.4

1.8
1.4

0.1

1 3
2 1

3 0

1 0
0 2

1 5

1 1

O.8

1.4
1.8
1.4

0.1

1.1

1 2

1 3
1 3

' 0 6
1 7

1 2

0 41.1 0.7

1.5 1.1 1.1
0.4 0.7 0.7

1.3

1.3

1.3

3.0
1.2

1.0

1.0

1 4

1 6

1 2

! 6

1 5
1 6

1 2

1 4

0 7
2 4

0 3

1 3

1 3
1 3

1 2

0 6

1 4

0 7

2 4

0 3
1 3

1 3
1 3

1 2

4

6

2

6
5

6

2

1.3
2 1

3 0
1 0

0 2

I 5
1 1

MEAN 4 !. 5 1.4
0.6 0.2 0.7 0.2 0.6 0 2

1.5

0.8

1.2

1.4

1.3

3.0
1.3

1 4

0 6

1 0

1 3
1 2

0 6

1 3

1 1

0 3

1.7

1 2

1 3
1 3

1 0

1 2
1 1

1 7

1 2
1 3

1 3

1 0

1 2
1 1

1 3

1.4

0 6

1 0

1 3

i 2

0 6
i 3

1 1

0 3

1.3

1.3

1.3

3 0

1 2

1 0
1 0

1 5

O 7

381 1.4 1.5

408 0.6 0.8

422 1.0 1.2
392 1 3 1.4

372 1 2 1.3

399 0 6 3.0

402 1 3 1.3
11

03

1 3

1 3

1 3

3 0

1 2
1 0

1 0

1 5

0 7

1 5

0 8

1 2

1 4
1 3

3 0

1 3

1 5

0 7
MEAN 1 .5 1 .5 ! .3

STDEV 0 . 7 0 . 2 0 . 7 0.2

1 7

1 2

I 3

1 3

1 0

1 2
1 1

1 3

0 2

T MEAN 1.2 1.5 1.3 1 .2 1.5 1.3 1.2 1.5 1.3

T STDEV 0.5 0.8 0.4 0.5 0.8 0.4 0.5 0.8 0.4
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CREATININE CLEARANCE RATE (ml/min)

DAY- -4 +5 +28

TIME- pre 3' 120' pre 3' 120' pre 3'
SUBJECT

376 137.0 162.5 137.0 162.5 137.0 162.5
407 160.9 267.1 160.9 267.1 160.9 267.1

409 146.2 349.4 146.2 349.4 146.2 349.4

397 126.1 249.7 126.1 249.7 1'26.1 249.7

391 175.1 27.3 175.1 27.3 175. 1 27.3

120'

MEAN 149.1 211.2 149.1 211.2 149.1 211.2
STDEV 19.3 122.4 19.3 122.4 19.3 122.4

390 131

420 78
412 250

403 32

385 164

405 131

394 127

0 126.9

2 134.4

2 129.3
5 333.3

0 134.7

1 102.5

4 99.0

131 0 126

78 2 134
250 2 129

32 5 333

164 0 134

131 1 102

127.4 99

9 131

4 78

3 250

3 32
7 164

5 131

0 127

0 126

2 134

2 129

5 333

0 134

I 102

4 99

9

4

3

3

7

5

0
MEAN 130 6 151.5 130.6 151 5 130 6 151 5

STDEV 68 0 81.5 68.0 81 5 68 0 81 5

156 2

77 5

136 9

205 2

139 2

372 1

138.9

175.2

381 140.9

408 60.1

422 129.8

392 211.0
372 131.4

399 76.4
402 140.2

MEAN 127.1

140.9 156.2 140.9 156.
60.1 77.5 60.1 77

129.8 136.9 129.8 136

211.0 205.2 211.0 205

131.4 139.2 131.4 139

76.4 372.1 76.4 372

140.2 138.9 140.2 138

127.1 175.2 127.1 175.
STDEV 49.1 94.6

2

5

9

2
2

1

9

2

49. 1 94.6 49. 1 94.6

T MEAN 134.2

T STDEV 50.2

175.9

95.4
134.2 175.9 134.2 175.9

50.2 95.4 50.2 95.4
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DAY- -4

PLASMA OSMOLALITY (mOsm/kg)

TIME- pre 3'
SUBJECT
376 289.0 288.0 289.0 288
407 290.0 290.0 290.0 290

409 286.0 289,0 286.0 289
397 292.0 289.0 292.0 289

391 287.0 284.0 287.0 284

÷5 +28

120' pre 3' 120' pre 3' 120'

0 289.0 288.0
0 290.0 290.0
0 286.0 289.0

0 292.0 289.0

0 287.0 284.0
MEAN 288.8 288.0 288.8 2880 288.8 288.0

STDEV 2.4 2.3 2.4 2 3 2.4 2.3

390 286.0 291.0 286.0 291.0 286.0 291.0

420 290.0 295.0 290.0 295.0 290.0 295.0

412 293.0 298.0 293.0 298.0 293.0 298.0

403 289.0 294.0 289.0 294.0 289.0 294.O

385 290.0 291.0 290.0 291.0 290.0 291.0

405 284.0 288.0 284.0 288.0 284.0 288.0

394 289.0 287.0 289.0 287.0 289.0 287.0
MEAN 288.7 292.0 288.7 292.0 288.7 292.0

STDEV 2.9 3.9 2.9 3.9 2.9 3.9

.0 292.0

.0 289.0

381 289 292.0 289.0

408 291 289.0 291.0

422 291.0 291.0 291.0

392 295.0 290.0 295.0
372 287.0 289.0 287.0

399 289.0 290.0 289.0

402 293.0 290.0 293.0

MEAN 290.7 290.1 290.7

STDEV 2.7 1.1 2.7

291 0

290 0

289 0

290 0

290 0

290 1

1 1

289.0 292.0

291.0 289.0

291.0 291.0

295.0 290.0

287.0 289.0

289.0 290.0

293.0 290.0
290.7 290.I

2.7 1.1

T MEAN 289.5 290.3 289.5 290.3 289.5 290.3

T STDEV 2.7 3.1 2.7 3.1 2.7 3.t
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DAY- -4

TIME- Dre 3'
SUBJECT

376 680.0 697.0 206

407 233.0 211 0 365
409 783.0 760 0 684

397 643.0 927 0 670

391 874,0 610 0 367
641 0

266 9

MEAN 642.0
STDEV 245.5

URINE OSMOLALITY (mOsm/kg)

+5 +28

438

188

120' pre 3' 120' Dre 3' 120'

680.0

233 0
783 0

643 0

871 0
642 0

245 5

697.0 206.0 680.0

211.0 365,0 233.0

760.0 684,0 783.0

927.0 570.0 6_3.0
610.0 367.0 871.0

641.0 438.4 642.0

697.0

211.0

760.0

927.0
610.0

641.0
266.9 188.5 245.5 266.9

309.0

245.0

1012.0

817.0
581.0

752.0

818.0

171.0

456.0

810 0

807 0

639 0

682 0

808 0
624 7

237 7

390 309.0 401.0 309.0

420 245.0 727.0 245.0

412 1012.0 863.0 1012 0

403 817.0 859.0 817 0

385 581.0 697.0 581 0

405 752.0 720.0 752 0
394 818.0 773.0 818 0

171 0 401.0

456 0 727.0

810 0 863.0

807 0 859.0
639 0 697.0

682 0 720.0

808.0 773.0

206.0

365.0

684.0
570.0

367.0

438.4
188.5

401.0

727.0

863.0

859.0
697.0

720.0

773.0

MEAN 647.7 720.0 647 7 624.7 720.0 647.7 720.0

6 237.7 155.4 283.6STDEV 283.6 155.4 283

0 323.0

0 494.0
0 893.0

0 340.0
0 776.0

0 503.0

0 808.0

381 323.0 275.0 397

408 494.0 371.0 499

422 893 0 801.0 902

392 340 0 696.0 735

372 776 0 383.0 677
399 503 0 532.0 908

402 808 0 677.0 793

0 323.0 275.0 397

0 494.0 371.0 499

0 893.0 801.0 902

0 340.0 696.0 735
0 776.0 383.0 677

0 503.0 532.0 908

0 808,0 677.0 793

MEAN 591 0 533.6 701 6 591.0 533.6 701 6 591.0

4 232.6 197.7 194

171.0

456.0

810.0

807 0
639 0

682 0

808 0

624 7
237 7

275 0

371 0
801 0

696 0

383 0

532 0
677 0

533 6

197 76 197.7 194 4 232.6STDEV 232

155.4

397 0

499 0

902 0

735 0

677 0

908 0
793 0

701 6

194 4

T MEAN 625.3

T STDEV 242.8

595.4 639.1 625.3 595.4 639,1 625.3 595.4 639.1

223.8 209.3 242.8 223.8 209.3 242.8 223.8 209.3
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OSMOTIC CLEARANCE RATE (ml/min)

DAY- -4 +5 +28

TIME- Dre 3 ' 120 ' IDre 3 ' 120 ' pre 3 '

SUBJECT
376 1 .9 2.4 1 .9 2.4 1 .9 2.4

407 2.9 7. 1 2,9 7. 1 2.9 7. 1

409 2. 1 5.9 2. 1 5.9 2. 1 5.9
397 1 .3 2, 1 1 .3 2. 1 ' 1 .3 2. 1

391 -5.5 0.5 5.5 0.5 5.5 0.5

120'

MEAN 2. 7 3.6 2.7 3.6 2.7 3.6

STDEV 1.6 2.8 1 . 6 2.8 1 . 6 2.8

390 2.6 2.7 2.6 2

420 1.7 2 6 1.7 2

412 3.6 2 3 3.6 2

403 0.6 6 9 0.6 6

3B5 3.1 2 5 3.1 2

405 2.3 2 0 2.3 2

394 2.0 2 6 2.0 2

3 1
1 7

7 2.6

6 1.7

3 3.6

9 0.6

5 3.1

0 2.3
6 2.0

STDEV 0.9
MEAN 2.3 2.3 3 1 2.3

0.90.9 1

2.2 2

1.5 1

1.4 2

2.4 2

1.8 2

1.4 6

2.3 2

2 7

1 9

2 !

2 7

2 1

6 4

2 9

3 0
1 5

381 2.2

408 1.5

422 1.4

392 2.4

372 1.8

399 1.4

402 2.3

7 2.2
9 1.5

1 1.4

7 2.4

1 1.8
4 1.4

9 2.3

MEAN 1.9 t.9 3 0 1.9
STDEV 0.4 0.4 1 5 0.4

2 7

2 6

2 3

6 9

2 5
2 0

2 6

3 ]
1 7

2 7
1 9

2 1

2 7

2 1
6 4

2 9

3 0

1 5

T MEAN 2.2 3.2 2.2 3.2 2.2
T STDEV 1.0 1.9 1.0 1.9 1o0

3.2

1.9
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PLASMA SODIUM (mEQ/I)

DAY-

TIME-

SUBJECT
376

407

409
397

391

pre

-4

138 6

138 9
136 8

137 7

139 2

138 2

10

+5 +28

3 ' 120 ' or e 3 ' 120 ' or e 3 ' 120 '

138.7
138 5

136 7

137 6

139 5

138 2
1 1

138 6
138 9

136 8

137 7

139 2
138 2

10

138.7

138.5
136.7

137.6

139.5

138 6
138 9

136 8

137 7

139 2
138 2

1 0
MEAN 138.2 .
STDEV 1.1

390
420

412

403

385
405

394

38 7

37 6

37 9

39 3
36 9

34 4

37 2

37 4

1 6

138.5

138.5

140.7
139.6

135.9
135.2

141.2

138.5

2.3

138 7

137 6
137 9

139 3

136 9

134 4
137 2

137.4

1.6

38.5

38 5

40 7
39 6

35 9

35 2

41 2

138.5
2.3

138 7

137 6

137 9
139 3

136 9

134 4
137 2

137.4
1.6

MEAN
STDEV

138 7

138 5

136 7
137 6

139 5

138 2

I 1

138.5

138.5
140.7

139.6

135.9
135.2

141.2

138.5

2.3

381

408
422

392

372

399
402

MEAN

STDEV

137 8

138 0
138 9

136 9

134 1
134 6

135 5

136 5

1 8

139.4

137.5

137 0
137 7

135 5

136 2

136 3

137 1

1 3

137.8

138.0
138.9

136.9

134.1

134.6

135.5

136._

1.8

139.4
137.5

137.0
137.7

135.5

136.2

136.3

f_-/C3 ............
1.3

137.8
138.0

138.9
136.9

134.1
134.6

135.5

136.5

1.8

139.4

137 5
137 0

137 7

135 5

136 2

136 3

137 1

1 3

T MEAN 137.3

T STDEV 1 . 6

137.9

1.7

137.3
1.6

137.9

1.7

137.3

1.6

137.9
1.7
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DAY -

TIME- Dre

SUBJECT
376 102 0
407 43 7

409 112 8
397 89 2

391 153 3

MEAN 100 2

STDEV 39 7

390 47 1

420 42 2

412 159 7

403 146 8

385 119 8
405 102 3

394 119 4

MEAN 105 3

STDEV 45 6

381 53.4

408 87.1

422 71.3

392 56.0

372 78.7

399 90.3
402 98.6

MEAN 76.5
STDEV 17.2

URINE SODIUM (mEG/I)

-4 +5 +28

3' 120' pre 3' 120' Dre 3' 120'

117
45

146
134

124

9 38.6 102.0
6 69.1 43.7

9 164.9 112.8
1 96.2 89.2

2 79.4 153.3

39

117 9
45 6

146 9
134 1

124 2
113 7

6 47.0

38.6 102.0 117.9 38.6
69.1 43.7 45.6 69.1

164.9 112.8 146.9 164.9

96.2 89.2 134.1 96.2
79.4 153.3 124.2 79.4

89.6113 7 89.6 100.2 89.6 100.2 113.7
39.7 39.6 47.0 39.7 39.6 47.0

33.0 71

83.8 134

124.3 122
153.1 160

109.5 141

83.2 115

149.1 185

71

34.

22

60.
41

15.

85

5 47.1

8 42 2

1 159 7

0 146 8
7 119 8

0 102 3

6 119 4

0 105 3
1 45 6

33.0

83.8

124 3

153 1

109 5

83 2
149 1

105 1

42 3

5 47

8 42

1 159
0 146

7 119

0 102

6 119

1 33

2 83

7 124

8 153

8 109

3 83
4 149

0

8

3

1

5

2
1

105.1 133 33.0 105 3 105 1

42.3 36 36 I 45 6 42 3

54.7 77.7 53.4 54

63.9 76.8 87.1 63

105.1 73.5 71.3 105

91.9 144.9 56.0 91

33.1 71.3 78.7 33

95.9 50.7 90.3 96
80.3 129.5 98.6 80

75.1 89.2 76.5 75

25.8 34.3 17.2 25

7 77

9 76

1 73

9 144

1 71

9 50
3 129

1 89

8 34

71.5

134 8

122 1

160 0
141 7

115 0

185 6

133 0

36 1

7 53.4 54.7 77.7

8 87.1 63.9 76.8

5 71.3 105.1 73.5

9 56.0 91.9 144.9
3 78.7 33.1 71.3

7 90.3 96.9 50.7

5 98.6 80.3 129.5

2 76.5 75.1 89.2
3 17.2 25.8 34.3

T MEAN 93.4
T STDEV 36.3

96.3 105.4 93.4 96.3 105.4 93.4 96.3 105.4

38.2 42.2 36.3 38.2 42.2 36.3 38.2 42.2
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FREE WATER CLEARANCE (ml/min}

DAY -

TIME-
SUBJECT

376

407

409

397

391

-4 +5

Dre 3' 120' pre 3' 120'

-1 .4

2.6

-3.7

-I .5

-0.3

-1.1 -1.4

0.7 2.6

-1 .3 -3.7

-0.7 -1 .5

-3. 7 -0.3

-1 1

0 7

-I 3

-0 7

-8 7

-1 2
1 6

Dr

+28

3 |

2.3

-1 .4

2.6

-3.7

-1 .5

-0.3

MEAN -0 . 8 - ! . 2 -0.8 -0.8
STDEV 2.3

-0.2

0 3
-2 5

-0 4

-1 S

-1 4

-1 3

-1 0

1 0

1 .6 2.3

e

-1 1
0 7

-1 3

-0 7

-3 7

-1 2

1 6

-0.2 1.9 -0.2

0.3 -0.9 0.3

-2.5 -1.5 -2.5
-0.4 -4.4 -0.4

-1.5 -1.4 -1.5

-1.4 -1.1 -I.4

-1.3 -1.7 -1.3

-1 .0 -1 .3

390
420

412

403

385

405

394

-1 .0

1.0 1.8 1.0

MEAN

1 9

-0 9
-1 5

-4 4

-I 4

-1 1

-1 7

-1 3

1 8STDEV

1.9

-0 9

-1 5
-4 4

-1 4

-1 1
-1 7

-t 3

1 8

381 -0.2 0.2 -0

408 -0 . 6 -0 . 4 -0
422 -0.9 -1 .4 -0

392 -0.3 -1 .6 -0

372 -1 . 1 -0.5 -1

399 -0.6 -2.9 -0

402 -1 .4 -1 .7 -1

-0.2 0.2

-0 6 -0.4
-0 9 -1 .4

-0 3 -1.6

-1 1 -0.5

-0 6 -2 • 9

-1 4 -1 .7

MEAN -0.8 -1.2 -0 -0 8 -1.2

2 0.2

6 -0 4
9 -I 4

3 -1 6

1 -0 5

6 -2 9

4 -1 7

8 -I 2
4 1 0STDEV 0.4 1 . 0 0 4 1.0

120'

TMEAN -1.0 -1.1 -1.0 -1.1 -1.0 -1.1

T STDEV 1.0 1.6 1.0 1.6 1.0 1.6

.i
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SODIUM EXCRETION RATE (mEatl)

DAY- -4 +5 +28

TIME- pre 3' 120' Dre 3' 120'

SUBJECT
376 83.9 117.9 97.1 83.9 117.9 97.1 83

407 156.2 443.0 162.2 156.2 443.0 162.2 156
409 87.3 330.5 327.1 87.3 330.5 327.1 87

397 51.1 88.1 178.2 51.1 88.1 178.2 51
391 277.2 30.7 31.2 277.2 30.7 31.2 277

pre 3 !

9 117.9
2 443.0
3 330.5

1 88.1
2 30.7

120'

97 1
162 2

327 1
178 2

31 2

159 2MEAN 131.1 202.0 159.2 131.1 202.0 159.2 131 1 202.0

STDEV 90.2 176.1 110.4 90.2 176.1 110.4 90 2 176.1 110.4

149

140

105

382

124
69

138

5 123.7 111

8 138.1 87

7 108.9 165

7 176 0 33
1 205 5 182

3 141 3 89

4 261 0 84

390

420

412

403
385

405

394

111 7

87 4

165 0
33 1

182 7

89 4

84 5

107 7
51 3

149 5 123.7

140 8 138.1

105 7 108.9

382 7 176 0

124 1 205 5
69 3 141 3

138.4 261 0

158.7 164 9

102.5 53 4

111.7 149.5

87.4 140.8

165.0 105.7

33.1 382.7

182.7 124.1
89.4 69.3

84.5 138.4

158.7MEAN 158 7 164 9 107 7 107.7

102 5 53 4 51 3 51.3 102.5

5
4

5

4

0

6
8

0

STDEV

156 1

95 3

82 0

104 8

52 1

335 4
100 4

132.3

381 107.5 156.1 196

408 79.4 95.3 116

422 32.5 82.0 42

392 114.4 104.8 227
372 52.0 52.1 66

399 72.6 335.4 36

402 80.8 100.4 151
MEAN 77.0 132.3 119

2 107.5 156.1 196.2 107

3 79.4 95.3 116.3 79
9 32.5 82.0 42.9 32

0 114.4 104.8 227.0 114

3 52.0 52.1 66.3 52

5 72.6 335.4 36.5 72
1 80.8 100.4 151.1 80

.5 77.0 132.3 119.5 77

123 7

138 1

108 9

176 0
205 5

141 3

261 0

164 9

53 4

196.2

116.3

42.9

227.0
66.3

36.5

151 . 1

119.5

STDEV 28.8 94.8 75.3 28.8 94.8 75.3 28.8 94.8 75.3

T MEAN 102.6 160.4 146.7 102.6 160.4 146.7 102.6 160.4 146.7

T STDEV 58.7 119.1 77.5 58.7 119.1 77.5 58.7 119. 1 77.5

t
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% FILTERED SODIUM EXCRETED

DAY- -4 +5 +28

TIME- pre 3' 120' Dre 3' 120' pre

SUBJECT

376 44.2 52.3 44.2 52.3 44.2
407 69.9 119.7 69.9 119.7 69.9

409 43.7 69.2 43.7 69.2 43.7
397 29.4 25.6 29.4 25.6 39.4

391 113.7 80.5 113.7 80.5 113.7
MEAN 60.2 69.5 60.2 69.5 60.2

STDEV 33.3 34.9 33.3 34.9 33.3

390

420

412

403

385

405

394

3 r

52.3

119 7

69 2
25 6

8O 5

69 5
34 9

61 5

81 2

47 8

73 0

81 4

50 7

48 3
63 4

15 1

61 .5

81 .2
47.8

73.0

81 .4
50.7

48,3

85 1

75 6
58 1

82 3

67 8

50 0

99.0

85.1

75.6

58.1

82.3

67.8

50.0

99.0

MEAN 63.4 74.0 74.0

85.1

75.6

58 1

82 3

67 8

50 0

99 0

74 0

168STDEV

381

408

422

392

372

399

402

MEAN

15.1 16.8

55.4

95 6

180

39 6

29 5

70 6

42 5

50.2

61 5

81 2

47 8

73 0

81 4

50 7

48 3

63 4

15 1

71 .7 55.4

89.4 95.6
43.7 18.0

37 . 1 39.6

27.6 29.5

66.2 70.6
53.0 42 . 5

55.5 50.2

16.8

STDEV 26.3 21.5 26.3

71 7

89 4

43 7
37 1

27 6

66 2
53 0

55 5

21 5

55.4
95.6

18.0

39.6

29.5

70.6

42.5

50.2

26.3

71 7

89 4

43 7

37 1

27 6

66 2

53 0

55 5
21 5

120'

T MEAN 57.7

T STDEV 24.3

66.0 57.7 66.0

24 . 3 24.3 24 . 3

57.7

24.3

66.0

24.3
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PLASMA POTASSIUM (mEq/I)

DAY- -4 +5 +28

pre 3' 120' pre 3' 120' pre 3' 120'

4 8
4 9

4 8

4 1

4 5

MEAN 4 6 4.5 4.6 4.5

TIME-
SUBJECT
376
407

409

397

391

4.7 4.8 4.7
4.5 4.9 4.5

4.7 4.8 4.7

4.3 4.1 4.3
4.5 4.5 4.5

STDEV O. 3 0 . 2 O. 3 O. 2

390

420

412

403

385

405

394

4 3

4 6

4 6

4 6

4 3

4 3

4 3

4 8
4 9

4 8
'4 1

4 5

4 6

0 3

4.0

3.9

4.4

4.3

4.2

4.4

4.7

4 3

4 6

4 6

4 6

4 3

4 3

4.3

4 0

3 9

4 4

4 3

4 2

4 4

4 7

4 3

4 6

4 6
4 6

4 3

4 3

4.3

MEAN 4.4 4.3 4.4 4.3 4.4

STDEV 0.2 0.3 0.2 0.3 0.2

381 4.5 4.5 4.5 4.5

408 4.4 4.4 4.4 4.4

422 4.8 4.0 4.8 4.0

392 4.6 4.8 4.6 4.8

372 4.2 4.4 4.2 4.4

399 4.1 4.0 4.1 4.0

402 4.3 4.2 4.3 4.2

4.5

4 4

4 8

4 6

4 2

4 1
4 3

4.7
4 5

4 7

4 3

4 5

4 5

0 2

4 0

3 9
4 4

4 3

4 2

4 4

4 7

4 3
0 3

4.5

4.4

4.0

4.8
4.4

4.0
4.2

MEAN 4.4 4.3 4.4 4.3 4.4 4.3

STDEV 0.2 0.3 0.2 0.3 0.2 0.3

T MEAN 4.5 4,4 4.5 4.4 4.5 4.4

T STDEV 0.2 0.3 0.2 0.3 0.2 0.3
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URINE POTASSIUM (mEa/I)

DAY- -4 +5 +28

TIME- pre 3' 120' pre 3' 120' pre 3' 120'
SUBJECT

376 78.1 56.9 21.1 78.1 56.9 21.1 78.1 56.9 21.1
407 26.3 28.2 38.0 26.3 28.2 38.0 26.3 28.2 38.0

409 42.5 41.0 39.4 42.5 41.0 39.4 42.5 41.0 39.4

397 78.8 58.7 50.6 78.8 58.7 50.6 _8.8 58.7 50.6
391 53.1 40.2 34.9 53.1 40.2 34.9 53. 1 40.2 34.9

WEAN 55.8 45.0 36.8 55.8 45.0 36.8 55.8 45.0 35.8

STDEV 22.8 12.8 10

390 33.3 18.1 43

420 34.9 50.1 62
412 65.5 32.3 66

403 87.1 87.9 79

385 78.0 100.1 86
405 84.6 85.7 77

394 58.0 65.7 59
_EAN 63.1 62.8 67

.6 22.8 12.8 10.6 22.8 12.8 10.6

1 33.3

I 34.9

7 65.5
5 87.1

2 78.0

3 84.6
0 58.0

7 63.1

18 1

50 1

32 3

87 9
100 1

85 7
65 7

62 8

43.1

62. 1

66.7

79.5
86.2

77.3

59.0
67.7

33.3 18 1

34.9 50 l

65.5 32 3

87.1 87 9
78.0 lO0 1

84.6 85 7

58.0 65 7
63.1 62.8

43. 1

62 1
66 7

79 5

86 2
77 3

59 0

67.7
STDEV 22,3

381 32.4

408 55.5
422 75.1

392 48.6

372 64.9
399 44.5

402 83.9

MEAN 67.8

30.7 14.6 22.3 30.7 14.6 22.3 30.7 14.6

STDEV 18.0 22.4 37.3

22.6 45.0 32.4 22

47.2 71.8 55.5 47
81.2 128.8 75.1 81

68.3 76.3 48 6 68

30.1 88.2 64 9 30

49.1 8.0 44 5 49
75.3 76.6 83 9 75

53.4 70.7 57 8

18 0
53

22

6 45.O 32

2 71.8 55

2 128.8 75
3 76.3 48

1 88.2 64

1 8.0 44

3 76.6 83

4 70.7 57

4 37.3 18

4 22.6 45.0
5 47 2 71.8

l 81 2 128.8

6 68 3 76.3

9 30 1 88.2
5 49 1 8.0

9 75 3 76.6

53 4

22 4

8

0

70.7

37.3

T MEAN 59.2
T STDEV 20.0

64.7 60.7 59.2 54.7 60.7 59.2 54.7 60.7

23.9 27.9 20.0 23.9 27.9 20.0 23.9 27.9
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DAY- -4

TIME- pre 3'

SUBJECT
376 64.2 56.9
407 94.0 273.9

409 32.9 92.3

397 45.2 38.6
391 96.0 9.9

MEAN 66.5 94.3

URINE EXCRETION RATE [mEalmin)

+5 +28

120' pre 3' 120' pre 3' 120'

53.1 64.2 56.9 53.1 64.2 56.9 53.1
89.2 94.0 273.9 89.2 94.0 273.9 89.2

78.2 32.9 92.3 78.2 32.9 92.3 78.2

93.7 45.2 38.6 93.7 45.2 38.6 93.7
13.7 96.0 9.9 13.7 96.0 9.9 13.7

65.6 66.5 94.3 65.6 66.5 94.3 65.6

STDEV 28.4 104.8 33.0 28.4 104.8 33.0 28.4 104.8 33.0

390 78.9 82.0 74.6 78.9

420 72.3 84.2 63.6 72.3

412 67.7 27.5 59.5 67.7

403 19.6 219.7 87.5 19.6

385 119.0 113.4 125.0 119.0

405 73.9 71.4 95.0 73.9

394 41,0 61.0 83.0 41.0

MEAN 67.5 94.2 84.0 67.5

STDEV 31.2 61.2 22.1 31.2

381 65.2 64.5
408 50.6 70.4

422 34.2 63.3

392 99.2 77.9

372 42.9 47.4

399 35.8 170.0
402 68.8 94.1

MEAN 56.7 83.9

82.0
84 2

27 5

219 7

113 4

71 4

61 0

94 2

61 2

74.6

63 6

59 5

87 5

125 0

95 0

83 0

84 0

22 1

78.9 82.0

72.3 84.2
67.7 27.5

19.6 219.7

119.0 113.4
73.9 71.4

41.0 61.0

67.5 94.2

31 .2 61 .2

113 6

108 7

75 1

119 5

82 0
5 8

89 4

84.:9

65.2

50 6

34 2

99 2

42 9

35 8

68 8

56.7

64.5 113.6

70.4 108.7

63.3 75. 1

77.9 119.5

47.4 82.0

170.0 5.8

94. 1 89.4
83.9 84.9

65 2
50 6

34 2

99 2

42 9

35 8
68 8

56.7

64.5

70 4

63 3

77 9

47 4

170 0

94 1

83.9

74.6

63 6

59 5

87 5

125 0

95 0

83 0

84 0

22 1

113.6

108.7

75.1

119.5

82.0

5.8

89.4

84.9 •

STDEV 23.1 40.5 38.7 23.1 40.5 38.7 23.1 40.5 38.7 :

T MEAN 63.2 90.4 79.5 63.2 90.4 79.5 63.2 90.4 79.5

T STDEV 26.6 65.3 31.2 26.6 65.3 31.2 26.6 65,3 31.2
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DAY-

TIME-
SUBJECT
376

407
409

397

391

MEAN

STDEV

390

420

.412
403

385

4O5

394

Dre

9 8

120
4 7

8 7

122

9 5

3 1

-4

%FILTERED POTASSIUM EXCRETED

+5

140

20 2

5 9
13 0

169

13 1

7 5

130

5 0

+28

3' 120' Dre 3 ° 12g' Dre 3

7.5
22 7

5 6

3 6

8 0

9 5
7 6

160
16 1

4 9

152

199

158

13 I

MEAN 14.4

STDEV 4.7

381

4O8

422

392
372

399

402

9 8
120

4 7

8 7
122

9 5

3 1

7.5

22 7

5 6
3 6

8 0

9 5

7 6

9 8

120
4 7

8 7

122

9 5

3 ]

MEAN
STDEV

14.0

2O 2
5 9

13 0

169

13 !

7 5

130

5 0

t60

16 1
4 9

152
19£'

158

131

144
4 7

1.4. 0

20 2

5 9

13 Et
169

13 I

7 5

13 U

5 0

9.2

20 4

11 7

8 0
7 8

11 3

163

12 1
4 7

104
193

5 5

103
7 7

11 5

11 5

109

4 3

9 2

20 4
11 7

8 0

7 8

il 3

163

12 1

4 7

10 4

193

5 5
103

7 7

I1 5

11 5

109

4 3

104

193
5 5

103

7 7

11 5

11 5

109

4 3

7 5

22 7
5 6

3 6

8 ('

9 5

7 6

16 1

152

199

15 8

13 t

14 n

4 7

9 2
20 4

tl 7

8 0
7 8

II 3

163

12 1

4 7

120"

T MEAN 11.3

T STDEV 4.3

12.3

5.6

11 .3

4.3

12.3

5.6

11 .3
4.3

12.3

5.6
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Appendix H

Publications from This Study

Extant

Arnaud, S., P. Berry, M. Cohen, J. DaneUis, C. DeRoshia,

J. Greenleaf, B. Harris, L. Keil, E. Bernauer,

M. Bond, S. Ellis, P. Lee, R. Seizer, and C.
Wade. Exercise countermeasures for bed rest

deconditioning. NASA Space Life Sciences

Symposium: Three Decades of Life Science

Research in Space. Washington, DC, June 21-26,

1987. p. 59-60. Abstract.

Arnaud, S., P. Berry, M. Cohen, J. Danellis, C. DeRoshia,

J. Greenleaf, B. Harris, L. Keil, E. Bernauer,

M. Bond, S. Ellis, P. Le_, R. Selzer, and C.

Wade. Effects of exercise during prolonged bed
rest. NASA Tech Briefs 16:136-137, 1992.

(ARC-12190).

Amaud, S. B., P. Fung, B. Harris, and R. Marcus. Effects

of a human bed rest model for spaceflight on

serum 1, 25-dihydroxyvitamin D. In: Proceed-
ings of the 5th Workshop on Vitamin D,

edited by A.W. Norman, R. Boullion, and

M. Thomasset. Berlin: Walter de Gruyter & Co.,

1991. pp. 915-916.

Amaud, S.B., R. Marcus, and J.E. Crl'eenleaf. Suppression

of the parathyroid/l, 25-dihydroxyvitamin D

axis during head-down tilt bed rest can he

prevented by exercise that loads the skeleton.

71st Annual Meeting of the Endocrine Society,

1989. p. 470. Abstract.

Arnaud, S.B., and E. Morey-Holton. Gravity, calcium,

and bone: Update, 1989. The Physiologist 33:
S-65 to S-68, 1990. Abstract.

Arnaud, S. B., and B. Silver. A non-invasive measure

of minerals and electrolytes in tissue. In:

Technology 2000, vol. 2. Washington, DC:
NASA Conference Publication 3109, 1991.

pp. 151-154.

Berry, P., I. Berry, S. Arnaud" and M. Moseley. P-3 l

magnetic resonance spectroscopy (MRS) of limb

muscles during bed rest with exercise counter-

measures. In: Proceedings of the 3rd European

Symposium on Life Sciences Research in Space,

edited by J. Hunt: Noordwijk: ESA Publications

Division, 1987. p. 163-165. (ESA SP-271,
1987).

DeRoshia, C.W. The effect of exercise countermeasures

upon performance and mood during anti-

orthostatic bedrest. Aviation, Space and Environ-
mental Medicine 60:489, 1989. Abstract.

DeRoshia, C.W., and J.E. Greenleaf. Performance and

mood-state parameters during 30-day 6 ° head-
down bed rest with exercise training. Aviation,

Space and Environmental Medicine 64:522-527,
1993.

Greenleaf, J.E. (Editor). Exercise countermeasures for

bed rest deconditioning (1986). Moffett Field,
CA: NASA Technical Memorandum 101045,

1989. 57 p.

Greenleaf, I.E. Human exercise capabilities in space.

SAE Technical Paper Series 901200, 1990. 11 p.

Greenleaf, J.E. Letters to the editor. (The metabolic

"'cost" of physical exercise training by astronauts
in microgravity). Aviation, Space and Environ-

mental Medicine 63:150, 1992.

Greenleaf, J.E., and E.M. Bemauer. Effects of exercise

during bed rest. NASA Tech Briefs 17:102,
1993. (ARC-11876).

Greenleaf, J.E., E.M. Bernauer, A.C. Ertl, D. McKenzie,

G. Myers, and T. Trowbridge. Maintenance of

peak 02 uptake during 30-day bed rest
reconditioning with isotonic and isokinetic

exercise training. Federation Proceedings
46:678, 1987. Abstract.

Greenleaf, J.E., E.M. Bernauer, A.C. Ertl, T.S.

Trowbridge, and C.E. Wade. Work capacity

during 30 days of bed rest with isotonic and

isokinetic exercise training. Journal of Applied
Physiology 67:1820-1826, 1989.

Greenleaf, J.E., R. Bulbulian, E.M. Bernauer, W.L.

Haskell, and T. Moore. Exercise-training

protocols for astronauts in microgravity. Journal

of Applied Physiology 67:2191-2204, 1989.

Greenleaf, J.E., J. Vemikos, C.E. Wade, and P.R. Barnes.

Effect of leg exercise training on vascular
volumes during 30 days of 6 ° head-down bed

rest. Journal of Applied Physiology 72:1887-

1894, 1992.

Gr_nleaf, J.E., J. Vernikos-Danellis, C.E. Wade, and
P.R. Barnes. Effect of intermittent isotonic and

isokinetic leg exercise training on vascular

volumes during 30 days of -6 ° head-down bed

rest. Proceedings of the XXXI International

Congress of Physiological Sciences, 1989.

p. 435. Abstract.
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Greenleaf, J.E., C.E. Wade, E.M. Bemauer, T.S.

Trowbridge, and A.C. Ertl. Isotonic and

isokinetic exercise during bed rest. NASA Tech
Briefs 17:90-91, 1993. (ARC-12180).

Greenleaf, J.E., C.E. Wade, and G. Leftheriotis.

Orthostatic responses following 30-day bed rest

de.conditioning with isotonic and isokinetic

exercise training. Aviation, Space and
Environmental Medicine 60:537-542, 1989.

Harris, B.A., B. Silver, J.E. Greenleaf, and S.B. Arnaud.

Alterations in intracellular calcium during bed
rest with and without exercise. Journal of Bone

and Mineral Research 2: suppl. 1: $39, 1987.

Abstract.

Lee, P.L.R.H. Selzer, and S. Ellis. Determination of leg

muscle volume by Magnetic Resonance

Imaging. NASA Space Life Sciences

Symposium: Three Decades of Life Science
Research in Space. Washington, DC, June 21-26,

1987. p. 168-169. Abstract.

Silver, B.B., B.A. Harris, J.E. Greenleaf, and S.B.
Arnaud. Intracellular ion concentrations in bed

rest subjects treated with exercise. Journal of the

American College of Nutrition 6:454, 1987.
Abstract.

Wade, C.E., J.E. Gr_nleaf, L.C. Keil, M.M. Hunt, and

J. Vernikos. Acute neuroendocdne responses to

orthostasis following 30 days of bed rest: effects
of exercise training. FASEB Journal 5:A1130,

1991. Abstract.

Wade, C.E., L.C. Keil, M.M. Hunt, and J_E. Greenleaf.

Acute hormonal responses to head-down tilt

versus supine posture. Medicine and Science in

Sports and Exercise 20:$48, 1988. Abstract.

In Press

Ellis, S., L.C. Kirby, and J.E. Greenleaf. Lower exa_mity

muscle thickness during 30-day 6° head-down
bed rest with isotonic and isokinetic exercise

training. Aviation, Space and Environmental
Medicine.

Greenleaf, J.E., E.M. Bernauer, A.C. Ertl, R. Buibulian,
and M. Bond. Isokinetic strength and endurance

during 30-day 6 ° head-down bed rest with
isotonic and isokinetic exercise training.

Aviation, Space and Environmental Medicine.

Greenleaf, J.E., J. Vernikos, C.E. Wade, and P.R. Barnes.

Effects of leg exercise on vascular volumes

during bed rest. NASA Tech Briefs, 1993.

(ARC- 12971 ).

In Preparation

Bernaner, E.M., A.C. Ertl, and J.E. Cn-eenleaf. Submaxi-

real supine exercise metabolism during 30-day
6 ° head-down bed rest with isotonic and

isokinetic exercise training. Aviation, Space and

Environmental Medicine.

Bernauer, E.M., W.F. Walby, A.C. Ertl, P.T. Dempster,

M. Bond, and J.E. G-reenle_. Knee-joint

proprioceptive sense-response during 30-day 6 °
head-down bed rest with isotonic and isokinetic

exercise training. Medicine and Science in

Sports and Exercise.

Dempster, P.T., E.M. Bernauer, and J.E. Greenleaf.

Proprioceptive isokinetic exercise test.
Moffett Field, CA: NASA Technical

Memorandum 104015, 1993. xxp.

DeRoshia, C.W. Effect of habitability and selection upon

human performance and mood during head-
down bed rest. Aviation, Space and

Environmental Medicine.

Greenleaf, J.E., P.L. Lee, S. Ellis, R.H. Seizer, and D.A.

Ortendahl. Leg muscle volume (MRI) during

30-day 6 ° head-down bed rest with isotonic and

isokinetic exercise training. Aviation, Space
Environmental Medicine.
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motivation; and improvement in the quality of sleep. (2) Working capacity (peak oxygen uptake) was maintained during bed
rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. (3) In general, there was no
significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size
(atrophy) of some leg muscles. (4) There was no effect of isotonic exercise training on orthostasis, since flit-table tolerance
was reduced similarly in all three groups following bed rest. (5) Bed rest resulted in significant decreases of postural
stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise
training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.
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